Bibliography
Major publications by the team in recent years
-
1F. Bimbot, E. Deruty, G. Sargent, E. Vincent.
System & Contrast : A Polymorphous Model of the Inner Organization of Structural Segments within Music Pieces, in: Music Perception, June 2016, vol. 33, no 5, pp. 631-661. [ DOI : 10.1525/mp.2016.33.5.631 ]
https://hal.inria.fr/hal-01188244 -
3N. Duong, E. Vincent, R. Gribonval.
Under-determined reverberant audio source separation using a full-rank spatial covariance model, in: IEEE Transactions on Audio, Speech and Language Processing, July 2010, vol. 18, no 7, pp. 1830–1840. [ DOI : 10.1109/TASL.2010.2050716 ]
https://hal.inria.fr/inria-00541865 -
4D. K. Hammond, P. Vandergheynst, R. Gribonval.
Wavelets on graphs via spectral graph theory, in: Applied and Computational Harmonic Analysis, March 2011, vol. 30, no 2, pp. 129–150. [ DOI : 10.1016/j.acha.2010.04.005 ]
https://hal.inria.fr/inria-00541855 -
5S. Kitić, L. Albera, N. Bertin, R. Gribonval.
Physics-driven inverse problems made tractable with cosparse regularization, in: IEEE Transactions on Signal Processing, January 2016, vol. 64, no 2, pp. 335-348. [ DOI : 10.1109/TSP.2015.2480045 ]
https://hal.inria.fr/hal-01133087 -
6S. Kitić.
Cosparse regularization of physics-driven inverse problems, IRISA, Inria Rennes, November 2015.
https://hal.archives-ouvertes.fr/tel-01237323 -
7C. Louboutin, F. Bimbot.
Modeling the multiscale structure of chord sequences using polytopic graphs, in: 18th International Society for Music Information Retrieval Conference, Suzhou, China, October 2017.
https://hal.archives-ouvertes.fr/hal-01653455 -
8S. Nam, M. E. Davies, M. Elad, R. Gribonval.
The Cosparse Analysis Model and Algorithms, in: Applied and Computational Harmonic Analysis, 2013, vol. 34, no 1, pp. 30–56, Preprint available on arXiv since 24 Jun 2011. [ DOI : 10.1016/j.acha.2012.03.006 ]
http://hal.inria.fr/inria-00602205 -
9A. Ozerov, E. Vincent, F. Bimbot.
A General Flexible Framework for the Handling of Prior Information in Audio Source Separation, in: IEEE Transactions on Audio, Speech and Language Processing, May 2012, vol. 20, no 4, pp. 1118 - 1133, 16.
http://hal.inria.fr/hal-00626962 -
10E. Vincent, N. Bertin, R. Gribonval, F. Bimbot.
From blind to guided audio source separation, in: IEEE Signal Processing Magazine, December 2013.
http://hal.inria.fr/hal-00922378
Doctoral Dissertations and Habilitation Theses
-
11H. Jain.
Learning compact representations for large scale image search, Université Rennes 1, June 2018.
https://tel.archives-ouvertes.fr/tel-01889405
Articles in International Peer-Reviewed Journals
-
12N. Bertin, E. Camberlein, R. Lebarbenchon, E. Vincent, S. Sivasankaran, I. Illina, F. Bimbot.
VoiceHome-2, an extended corpus for multichannel speech processing in real homes, in: Speech Communication, 2018.
https://hal.inria.fr/hal-01923108 -
13M. Chafii, J. Palicot, R. Gribonval, F. Bader.
Adaptive Wavelet Packet Modulation, in: IEEE Transactions on Communications, July 2018, vol. 66, no 7, pp. 2947-2957. [ DOI : 10.1109/TCOMM.2018.2809586 ]
https://hal-centralesupelec.archives-ouvertes.fr/hal-01713821 -
14I. Dokmanić, R. Gribonval.
Concentration of the Frobenius norm of generalized matrix inverses, in: SIAM Journal on Matrix Analysis and Applications, 2018, https://arxiv.org/abs/1810.07921 - Revised/condensed/renamed version of preprint "Beyond Moore-Penrose Part II: The Sparse Pseudoinverse".
https://hal.inria.fr/hal-01897046 -
15N. Keriven, A. Bourrier, R. Gribonval, P. Pérez.
Sketching for Large-Scale Learning of Mixture Models, in: Information and Inference, September 2018, vol. 7, no 3, pp. 447-508, https://arxiv.org/abs/1606.02838 - to appear in Information and Inference, a journal of the IMA (available online since December 2017). [ DOI : 10.1093/imaiai/iax015 ]
https://hal.inria.fr/hal-01329195 -
16L. Le Magoarou, R. Gribonval, N. Tremblay.
Approximate fast graph Fourier transforms via multi-layer sparse approximations, in: IEEE transactions on Signal and Information Processing over Networks, June 2018, vol. 4, no 2, pp. 407–420, https://arxiv.org/abs/1612.04542. [ DOI : 10.1109/TSIPN.2017.2710619 ]
https://hal.inria.fr/hal-01416110 -
17A. Magassouba, N. Bertin, F. Chaumette.
Aural servo: sensor-based control from robot audition, in: IEEE Transactions on Robotics, June 2018, vol. 34, no 3, pp. 572-585. [ DOI : 10.1109/TRO.2018.2805310 ]
https://hal.inria.fr/hal-01694366 -
18A. Magassouba, N. Bertin, F. Chaumette.
Exploiting the distance information of the interaural level difference for binaural robot motion control, in: IEEE Robotics and Automation Letters, July 2018, vol. 3, no 3, pp. 2048-2055. [ DOI : 10.1109/LRA.2018.2806560 ]
https://hal.inria.fr/hal-01712981 -
19E. Perthame, F. Forbes, A. Deleforge.
Inverse regression approach to robust nonlinear high-to-low dimensional mapping, in: Journal of Multivariate Analysis, January 2018, vol. 163, pp. 1 - 14. [ DOI : 10.1016/j.jmva.2017.09.009 ]
https://hal.inria.fr/hal-01347455 -
20Y. Traonmilin, R. Gribonval.
Stable recovery of low-dimensional cones in Hilbert spaces: One RIP to rule them all, in: Applied and Computational Harmonic Analysis, July 2018, vol. 45, no 1, pp. 170–205, https://arxiv.org/abs/1510.00504. [ DOI : 10.1016/j.acha.2016.08.004 ]
https://hal.inria.fr/hal-01207987 -
21C. Zheng, A. Deleforge, X. Li, W. Kellermann.
Statistical Analysis of the Multichannel Wiener Filter Using a Bivariate Normal Distribution for Sample Covariance Matrices, in: IEEE/ACM Transactions on Audio, Speech and Language Processing, May 2018, vol. 26, no 5, pp. 951 - 966. [ DOI : 10.1109/TASLP.2018.2800283 ]
https://hal.inria.fr/hal-01909612
International Conferences with Proceedings
-
22M. Chafii, J. Palicot, R. Gribonval, F. Bader.
Fourier Based Adaptive Waveform, in: ICT 2018 - 25th International Conference on Telecommunications, Saint-Malo, France, IEEE, June 2018, pp. 37-41. [ DOI : 10.1109/ICT.2018.8464864 ]
https://hal.archives-ouvertes.fr/hal-01779764 -
23A. Chatalic, R. Gribonval, N. Keriven.
Large-Scale High-Dimensional Clustering with Fast Sketching, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, IEEE, April 2018, pp. 4714-4718. [ DOI : 10.1109/ICASSP.2018.8461328 ]
https://hal.inria.fr/hal-01701121 -
24N. Courty, R. Flamary, M. Ducoffe.
Learning Wasserstein Embeddings, in: ICLR 2018 - 6th International Conference on Learning Representations, Vancouver, Canada, April 2018, pp. 1-13.
https://hal.inria.fr/hal-01956306 -
25B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, N. Courty.
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation, in: ECCV 2018 - 15th European Conference on Computer Vision, Munich, Germany, LNCS, Springer, September 2018, vol. 11208, pp. 467-483, https://arxiv.org/abs/1803.10081 - European Conference on Computer Vision 2018 (ECCV-2018). [ DOI : 10.1007/978-3-030-01225-0_28 ]
https://hal.inria.fr/hal-01956356 -
26D. Di Carlo, A. Liutkus, K. Déguernel.
Interference reduction on full-length live recordings, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech, and Signal Processing, Calgary, Canada, IEEE, April 2018, pp. 736-740. [ DOI : 10.1109/ICASSP.2018.8462621 ]
https://hal.inria.fr/hal-01713889 -
27C. Fraga Dantas, J. E. Cohen, R. Gribonval.
Learning fast dictionaries for sparse representations using low-rank tensor decompositions, in: LVA/ICA 2018 - 14th International Conference on Latent Variable Analysis and Signal Separation, Guildford, United Kingdom, LNCS, Springer, July 2018, vol. 10891, pp. 456-466. [ DOI : 10.1007/978-3-319-93764-9_42 ]
https://hal.inria.fr/hal-01709343 -
28C. Fraga Dantas, R. Gribonval.
Faster and still safe: combining screening techniques and structured dictionaries to accelerate the Lasso, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, IEEE, April 2018, pp. 4069-4073. [ DOI : 10.1109/ICASSP.2018.8461514 ]
https://hal.inria.fr/hal-01706392 -
29C. Gaultier, N. Bertin, R. Gribonval.
CASCADE : Channel-Aware Structured Cosparse Audio DEclipper, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, IEEE, April 2018, pp. 571-575. [ DOI : 10.1109/ICASSP.2018.8461694 ]
https://hal.inria.fr/hal-01714667 -
30R. F. Ibarra-Hernández, N. Bertin, M. A. Alonso-Arévalo, H. A. Guillén-Ramírez.
A benchmark of heart sound classification systems based on sparse decompositions, in: SIPAIM 2018 - 14th International Symposium on Medical Information Processing and Analysis, Mazatlán, Mexico, October 2018, pp. 1-14.
https://hal.inria.fr/hal-01935058 -
31H. Jain, J. Zepeda, P. Pérez, R. Gribonval.
Learning a Complete Image Indexing Pipeline, in: CVPR 2018 - IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, United States, IEEE, June 2018, https://arxiv.org/abs/1712.04480.
https://hal.inria.fr/hal-01683385 -
32N. Keriven, A. Deleforge, A. Liutkus.
Blind Source Separation Using Mixtures of Alpha-Stable Distributions, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, IEEE, April 2018, pp. 771-775, https://arxiv.org/abs/1711.04460. [ DOI : 10.1109/ICASSP.2018.8462095 ]
https://hal.inria.fr/hal-01633215 -
33A. Liutkus, C. Rohlfing, A. Deleforge.
Audio source separation with magnitude priors: the BEADS model, in: ICASSP 2018 – IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, Signal Processing and Artificial Intelligence: Changing the World, April 2018, pp. 1-5. [ DOI : 10.1109/ICASSP.2018.8462515 ]
https://hal.inria.fr/hal-01713886 -
34H. Peic Tukuljac, A. Deleforge, R. Gribonval.
MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval, in: NeurIPS 2018 - Thirty-second Conference on Neural Information Processing Systems, Montréal, Canada, December 2018, pp. 1-11, https://arxiv.org/abs/1810.13338.
https://hal.inria.fr/hal-01906385 -
35R. Scheibler, D. Di Carlo, A. Deleforge, I. Dokmanić.
Separake: Source Separation with a Little Help From Echoes, in: ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, April 2018.
https://hal.inria.fr/hal-01909531 -
36V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, M. Blondel.
Large-Scale Optimal Transport and Mapping Estimation, in: ICLR 2018 - International Conference on Learning Representations, Vancouver, Canada, April 2018, pp. 1-15, https://arxiv.org/abs/1711.02283 - 15 pages, 4 figures. To appear in the Proceedings of the International Conference on Learning Representations (ICLR) 2018.
https://hal.inria.fr/hal-01956354 -
37M. Strauss, P. Mordel, V. Miguet, A. Deleforge.
DREGON: Dataset and Methods for UAV-Embedded Sound Source Localization, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, October 2018.
https://hal.inria.fr/hal-01854878
National Conferences with Proceedings
-
38N. Libermann, F. Bimbot, E. Vincent.
Exploration de dépendances structurelles mélodiques par réseaux de neurones récurrents, in: JIM 2018 - Journées d'Informatique Musicale, Amiens, France, May 2018, pp. 81-86.
https://hal.archives-ouvertes.fr/hal-01791381
Conferences without Proceedings
-
39C. Elvira, H.-P. Dang, P. Chainais.
Small variance asymptotics and bayesian nonparametrics for dictionary learning, in: EUSIPCO 2018 - 26th European Signal Processing Conference, Rome, Italy, September 2018, pp. 1607-1611. [ DOI : 10.23919/EUSIPCO.2018.8553142 ]
https://hal.archives-ouvertes.fr/hal-01961852 -
40C. Elvira, R. Gribonval, C. Herzet, C. Soussen.
A case of exact recovery with OMP using continuous dictionaries, in: CS 2018 - 9th International Conference on Curves and Surfaces, Arcachon, France, June 2018.
https://hal.inria.fr/hal-01937532 -
41C. Guichaoua, F. Bimbot.
Inférence de segmentation structurelle par compression via des relations multi-échelles dans les séquences d'accords, in: JIM 2018 - Journées d'Informatique Musicale, Amiens, France, May 2018, pp. 71-79.
https://hal.archives-ouvertes.fr/hal-01791367 -
42N. Keriven, R. Gribonval.
Instance Optimal Decoding and the Restricted Isometry Property, in: International Conference on New Computational Methods for Inverse Problems (NCMIP), Cachan, France, May 2018, https://arxiv.org/abs/1802.09905.
https://hal.inria.fr/hal-01718411 -
43Y. Traonmilin, S. Vaiter, R. Gribonval.
Is the 1-norm the best convex sparse regularization?, in: iTWIST'18, Marseille, France, Proceedings of iTWIST'18, November 2018, https://arxiv.org/abs/1806.08690.
https://hal.archives-ouvertes.fr/hal-01819219
Scientific Books (or Scientific Book chapters)
-
44D. K. Hammond, P. Vandergheynst, R. Gribonval.
The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation, in: Vertex-Frequency Analysis of Graph Signals, L. Stanković, E. Sejdić (editors), Signals and Communication Technology, Springer International Publishing, December 2019, pp. 141-175. [ DOI : 10.1007/978-3-030-03574-7_3 ]
https://hal.inria.fr/hal-01943589 -
45S. Kitić, S. Bensaid, L. Albera, N. Bertin, R. Gribonval.
Versatile and scalable cosparse methods for physics-driven inverse problems, in: Compressed Sensing and its Applications – Second International MATHEON Conference 2015, H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Matha (editors), Series: Applied and Numerical Harmonic Analysis, Birkhaüser Basel, March 2018, pp. 291-332. [ DOI : 10.1007/978-3-319-69802-1_10 ]
https://hal.inria.fr/hal-01496767 -
46Y. Traonmilin, G. Puy, R. Gribonval, M. E. Davies.
Compressed sensing in Hilbert spaces, in: Compressed Sensing and its Applications – Second International MATHEON Conference 2015, H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Matha (editors), Series: Applied and Numerical Harmonic Analysis, Birkhaüser Basel, March 2018, pp. 359–384, https://arxiv.org/abs/1702.04917. [ DOI : 10.1007/978-3-319-69802-1_12 ]
https://hal.archives-ouvertes.fr/hal-01469134
Scientific Popularization
-
47R. Gribonval.
D'APB à Parcoursup : quelles méthodes d'affectation post-bac ?, in: Interstices, February 2018.
https://hal.inria.fr/hal-01827604
Other Publications
-
48E. Byrne, A. Chatalic, R. Gribonval, P. Schniter.
Sketched Clustering via Hybrid Approximate Message Passing, January 2019, https://arxiv.org/abs/1712.02849 - working paper or preprint.
https://hal.inria.fr/hal-01991231 -
49C. Fraga Dantas, R. Gribonval.
Stable safe screening and structured dictionaries for faster regularization, December 2018, https://arxiv.org/abs/1812.06635 - working paper or preprint.
https://hal.inria.fr/hal-01954261 -
50R. Gribonval, M. Nikolova.
A characterization of proximity operators, July 2018, https://arxiv.org/abs/1807.04014 - This work and the companion paper [17] are dedicated to the memory of Mila Nikolova, who passed away prematurely in June 2018. Mila dedicated much of her energy to bring the technical content to completion during the spring of 2018. The first author did his best to finalize the papers as Mila would have wished. He should be held responsible for any possible imperfection in the final manuscript.
https://hal.inria.fr/hal-01835101 -
51R. Gribonval, M. Nikolova.
On bayesian estimation and proximity operators, July 2018, https://arxiv.org/abs/1807.04021 - This work and the companion paper [10] are dedicated to the memory of Mila Nikolova, who passed away prematurely in June 2018. Mila dedicated much of her energy to bring the technical content to completion during the spring of 2018. The first author did his best to finalize the papers as Mila would have wished. He should be held responsible for any possible imperfection in the final manuscript.
https://hal.inria.fr/hal-01835108 -
52T. Le Naour, N. Courty, S. Gibet.
Kinematic driven by distances, July 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01838784 -
53A. Rakotomamonjy, A. Traoré, M. Berar, R. Flamary, N. Courty.
Distance Measure Machines, November 2018, https://arxiv.org/abs/1803.00250 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01717940
-
54A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, M. D. Plumbley.
Audio Inpainting, in: IEEE Transactions on Audio, Speech and Language Processing, March 2012, vol. 20, no 3, pp. 922 - 932. [ DOI : 10.1109/TASL.2011.2168211 ]
http://hal.inria.fr/inria-00577079 -
55L. Albera, S. Kitić, N. Bertin, G. Puy, R. Gribonval.
Brain source localization using a physics-driven structured cosparse representation of EEG signals, in: 2014 IEEE International Workshop on Machine Learning for Signal Processing, Reims, France, September 2014, 6 p.
https://hal.archives-ouvertes.fr/hal-01027609 -
56F. Bimbot.
Towards an Information-Theoretic Framework for Music Structure, 2016, pp. 167-168, Invited talk at Dagstuhl Seminar 16092 on Computational Music Structure Analysis (Ed. : M. Müller, E. Chew, J.P. Bello). [ DOI : 10.4230/DagRep.6.2.147 ]
https://hal.archives-ouvertes.fr/hal-01421013 -
57A. Bonnefoy, V. Emiya, L. Ralaivola, R. Gribonval.
Dynamic Screening: Accelerating First-Order Algorithms for the Lasso and Group-Lasso, in: IEEE Transactions on Signal Processing, 2015, vol. 63, no 19, 20 p. [ DOI : 10.1109/TSP.2015.2447503 ]
https://hal.archives-ouvertes.fr/hal-01084986 -
58A. Bourrier.
Compressed sensing and dimensionality reduction for unsupervised learning, Université Rennes 1, May 2014.
https://tel.archives-ouvertes.fr/tel-01023030 -
59A. Bourrier, R. Gribonval, P. Pérez.
Compressive Gaussian Mixture Estimation, in: Signal Processing with Adaptive Sparse Structured Representations (SPARS) 2013, Switzerland, July 2013.
http://hal.inria.fr/hal-00811819 -
60A. Bourrier, R. Gribonval, P. Pérez.
Compressive Gaussian Mixture Estimation, in: ICASSP - 38th International Conference on Acoustics, Speech, and Signal Processing, Vancouver, Canada, 2013, pp. 6024-6028.
http://hal.inria.fr/hal-00799896 -
61A. Bourrier, R. Gribonval, P. Pérez.
Estimation de mélange de Gaussiennes sur données compressées, in: 24ème Colloque Gretsi, France, September 2013, 191 p.
http://hal.inria.fr/hal-00839579 -
62E. Byrne, R. Gribonval, P. Schniter.
Sketched Clustering via Hybrid Approximate Message Passing, in: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, United States, October 2017.
https://hal.inria.fr/hal-01650160 -
63M. Chafii.
Study of a new multicarrier waveform with low PAPR, CentraleSupélec, October 2016.
https://hal.archives-ouvertes.fr/tel-01399509 -
64M. Chafii, J. Palicot, R. Gribonval, F. Bader.
A Necessary Condition for Waveforms with Better PAPR than OFDM, in: IEEE Transactions on Communications, 2016. [ DOI : 10.1109/TCOMM.2016.2584068 ]
https://hal.inria.fr/hal-01128714 -
65M. Chafii, J. Palicot, R. Gribonval.
A PAPR upper bound of generalized waveforms for multi-carrier modulation systems, in: 6th International Symposium on Communications, Control, and Signal Processing - ISCCSP 2014, Athènes, Greece, May 2014, pp. 461 - 464. [ DOI : 10.1109/ISCCSP.2014.6877913 ]
https://hal-supelec.archives-ouvertes.fr/hal-01072519 -
66M. Chafii, J. Palicot, R. Gribonval.
Closed-form Approximations of the PAPR Distribution for Multi-Carrier Modulation Systems, in: EUSIPCO 2014 - European Signal Processing Conference, Lisbonne, Portugal, September 2014.
https://hal.inria.fr/hal-01054126 -
67M. Chafii, J. Palicot, R. Gribonval.
Closed-form approximations of the peak-to-average power ratio distribution for multi-carrier modulation and their applications, in: EURASIP Journal on Advances in Signal Processing, 2014, vol. 2014, no 1, 121 p. [ DOI : 10.1186/1687-6180-2014-121 ]
https://hal.inria.fr/hal-01056153 -
68M. Chafii, J. Palicot, R. Gribonval.
L'optimalité de l'OFDM en termes de performance en PAPR, in: 25ème Colloque Gretsi 2015, Lyon, France, September 2015.
https://hal-supelec.archives-ouvertes.fr/hal-01165509 -
69M. Chafii, J. Palicot, R. Gribonval.
Dispositif de communication à modulation temps-fréquence adaptative, July 2016, no Numéro de demande : 1656806 ; Numéro de soumission : 1000356937.
https://hal.inria.fr/hal-01375661 -
70M. Chafii, J. Palicot, R. Gribonval.
Wavelet modulation: An alternative modulation with low energy consumption, in: Comptes Rendus Physique, 2017, vol. 18, no 2, pp. 156-167. [ DOI : 10.1016/j.crhy.2016.11.010 ]
https://hal.archives-ouvertes.fr/hal-01445465 -
71A. Deleforge, F. Forbes, S. Ba, R. Horaud.
Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies, in: IEEE Journal of Selected Topics in Signal Processing, 2015, vol. 9, no 6, pp. 1037–1048. -
72A. Deleforge, F. Forbes, R. Horaud.
Acoustic space learning for sound-source separation and localization on binaural manifolds, in: International journal of neural systems, 2015, vol. 25, no 01, 1440003 p.
https://hal.archives-ouvertes.fr/hal-00960796 -
73A. Deleforge, F. Forbes, R. Horaud.
High-dimensional regression with gaussian mixtures and partially-latent response variables, in: Statistics and Computing, 2015, vol. 25, no 5, pp. 893–911. -
74A. Deleforge, R. Horaud, Y. Y. Schechner, L. Girin.
Co-localization of audio sources in images using binaural features and locally-linear regression, in: IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 2015, vol. 23, no 4, pp. 718–731. -
75A. Deleforge, Y. Traonmilin.
Phase Unmixing : Multichannel Source Separation with Magnitude Constraints, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, United States, March 2017.
https://hal.inria.fr/hal-01372418 -
76I. Dokmanić, R. Gribonval.
Beyond Moore-Penrose Part I: Generalized Inverses that Minimize Matrix Norms, July 2017, working paper or preprint.
https://hal.inria.fr/hal-01547183 -
77I. Dokmanić, R. Gribonval.
Beyond Moore-Penrose Part II: The Sparse Pseudoinverse, July 2017, See https://hal.inria.fr/hal-01897046 for a revised/condensed/renamed version of this preprint.
https://hal.inria.fr/hal-01547283 -
78I. Dokmanić, R. Parhizkar, A. Walther, Y. M. Lu, M. Vetterli.
Acoustic echoes reveal room shape, in: Proceedings of the National Academy of Sciences, 2013, vol. 110, no 30, pp. 12186–12191.
http://dx.doi.org/10.1073/pnas.1221464110 -
79V. Drouard, R. Horaud, A. Deleforge, S. Ba, G. Evangelidis.
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions, in: IEEE Transactions on Image Processing, March 2017, vol. 26, no 3, pp. 1428 - 1440. [ DOI : 10.1109/TIP.2017.2654165 ]
https://hal.inria.fr/hal-01413406 -
80C. Fraga Dantas, R. Gribonval.
Dynamic Screening with Approximate Dictionaries, in: XXVIème colloque GRETSI, Juan-les-Pins, France, September 2017.
https://hal.inria.fr/hal-01598021 -
81C. Fraga Dantas, R. Gribonval, R. R. Lopes, M. N. Da Costa.
Learning Dictionaries as Sums of Kronecker Products, June 2017, SPARS 2017 - Signal Processing with Adaptive Sparse Structured Representations workshop.
https://hal.inria.fr/hal-01514044 -
82C. Gaultier, N. Bertin, S. Kitić, R. Gribonval.
A modeling and algorithmic framework for (non)social (co)sparse audio restoration, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01649261 -
83C. Gaultier, S. Kataria, A. Deleforge.
VAST : The Virtual Acoustic Space Traveler Dataset, in: International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA), Grenoble, France, February 2017.
https://hal.archives-ouvertes.fr/hal-01416508 -
84C. Gaultier, S. Kitić, N. Bertin, R. Gribonval.
AUDASCITY: AUdio Denoising by Adaptive Social CosparsITY, in: 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, August 2017.
https://hal.inria.fr/hal-01540945 -
85C. Gaultier, S. Kitić, N. Bertin, R. Gribonval.
Cosparse Denoising: The Importance of Being Social, June 2017, The Signal Processing with Adaptive Sparse Structured Representations (SPARS) workshop.
https://hal.inria.fr/hal-01510710 -
86M. A. Gerzon.
Periphony: With-Height Sound Reproduction, in: J. Audio Eng. Soc, 1973, vol. 21, no 1, pp. 2–10.
http://www.aes.org/e-lib/browse.cfm?elib=2012 -
87R. Giryes, S. Nam, M. Elad, R. Gribonval, M. E. Davies.
Greedy-Like Algorithms for the Cosparse Analysis Model, in: Linear Algebra and its Applications, January 2014, vol. 441, pp. 22–60, partially funded by the ERC, PLEASE project, ERC-2011-StG-277906. [ DOI : 10.1016/j.laa.2013.03.004 ]
http://hal.inria.fr/hal-00716593 -
88R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin.
Compressive Statistical Learning with Random Feature Moments, December 2017, Main novelties compared to version 1: improved concentration bounds, improved sketch sizes for compressive k-means and compressive GMM that now scale linearly with the ambient dimension.
https://hal.inria.fr/hal-01544609 -
89R. Gribonval.
Should penalized least squares regression be interpreted as Maximum A Posteriori estimation?, in: IEEE Transactions on Signal Processing, May 2011, vol. 59, no 5, pp. 2405-2410. [ DOI : 10.1109/TSP.2011.2107908 ]
http://hal.inria.fr/inria-00486840 -
90C. Guichaoua.
Compression models and complexity criteria for the description and the inference of music structure, Université Rennes 1, September 2017.
https://tel.archives-ouvertes.fr/tel-01687054 -
91R. F. Ibarra-Hernández, M. A. Alonso-Arévalo, S. Villarreal, C. I. Nieblas.
A parametric model for heart sounds, in: Signals, Systems and Computers, 2015 49th Asilomar Conference on, IEEE, 2015, pp. 765–769. -
92H. Jain, P. Pérez, R. Gribonval, J. Zepeda, H. Jégou.
Approximate search with quantized sparse representations, in: 14th European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, October 2016.
https://hal.archives-ouvertes.fr/hal-01361953 -
93H. Jain, J. Zepeda, P. Pérez, R. Gribonval.
SUBIC: A supervised, structured binary code for image search, in: The IEEE International Conference on Computer Vision (ICCV), Venise, Italy, IEEE, October 2017, Accepted at ICCV 2017 (Spotlight). [ DOI : 10.1109/ICCV.2017.96 ]
https://hal.inria.fr/hal-01683390 -
94S. Kataria, C. Gaultier, A. Deleforge.
Hearing in a shoe-box : binaural source position and wall absorption estimation using virtually supervised learning , in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New-Orleans, United States, March 2017.
https://hal.inria.fr/hal-01372435 -
95N. Keriven, A. Bourrier, R. Gribonval, P. Pérez.
Sketching for Large-Scale Learning of Mixture Models, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), Shanghai, China, March 2016.
https://hal.inria.fr/hal-01208027 -
96N. Keriven, R. Gribonval.
Compressive Gaussian Mixture Estimation by Orthogonal Matching Pursuit with Replacement, July 2015, SPARS 2015.
https://hal.inria.fr/hal-01165984 -
97N. Keriven.
Sketching for large-scale learning of mixture models, Université Rennes 1, October 2017.
https://tel.archives-ouvertes.fr/tel-01620815 -
98N. Keriven, N. Tremblay, Y. Traonmilin, R. Gribonval.
Compressive K-means, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), New Orleans, United States, March 2017.
https://hal.inria.fr/hal-01386077 -
99S. Kitić, N. Bertin, R. Gribonval.
A review of cosparse signal recovery methods applied to sound source localization, in: Le XXIVe colloque Gretsi, Brest, France, September 2013.
http://hal.inria.fr/hal-00838080 -
100S. Kitić, N. Bertin, R. Gribonval.
Audio Declipping by Cosparse Hard Thresholding, August 2014, iTwist - 2nd international - Traveling Workshop on Interactions between Sparse models and Technology.
https://hal.inria.fr/hal-00922497 -
101S. Kitić, N. Bertin, R. Gribonval.
Hearing behind walls: localizing sources in the room next door with cosparsity, in: ICASSP - IEEE International Conference on Acoustics, Speech, and Signal Processing, Florence, Italy, May 2014. [ DOI : 10.1109/ICASSP.2014.6854168 ]
https://hal.inria.fr/hal-00904779 -
102S. Kitić, N. Bertin, R. Gribonval.
Sparsity and cosparsity for audio declipping: a flexible non-convex approach, in: LVA/ICA 2015 - The 12th International Conference on Latent Variable Analysis and Signal Separation, Liberec, Czech Republic, August 2015, 8 p.
https://hal.inria.fr/hal-01159700 -
103M. Kowalski, K. Siedenburg, M. Dörfler.
Social Sparsity! Neighborhood Systems Enrich Structured Shrinkage Operators, in: IEEE Transactions on Signal Processing, May 2013, vol. 61, no 10, pp. 2498 - 2511. [ DOI : 10.1109/TSP.2013.2250967 ]
https://hal.archives-ouvertes.fr/hal-00691774 -
104L. Le Magoarou, R. Gribonval, A. Gramfort.
FAST: speeding up linear transforms for tractable inverse problems, in: European Signal Processing Conference (EUSIPCO), Nice, France, August 2015.
https://hal.archives-ouvertes.fr/hal-01156478 -
105L. Le Magoarou, R. Gribonval.
Chasing butterflies: In search of efficient dictionaries, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015. [ DOI : 10.1109/ICASSP.2015.7178579 ]
https://hal.archives-ouvertes.fr/hal-01104696 -
106L. Le Magoarou, R. Gribonval.
Are There Approximate Fast Fourier Transforms On Graphs?, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016.
https://hal.archives-ouvertes.fr/hal-01254108 -
107L. Le Magoarou, R. Gribonval.
Flexible Multi-layer Sparse Approximations of Matrices and Applications, in: IEEE Journal of Selected Topics in Signal Processing, June 2016. [ DOI : 10.1109/JSTSP.2016.2543461 ]
https://hal.inria.fr/hal-01167948 -
108L. Le Magoarou.
Efficient matrices for signal processing and machine learning, INSA de Rennes, November 2016.
https://tel.archives-ouvertes.fr/tel-01412558 -
109L. Le Magoarou, N. Tremblay, R. Gribonval.
Analyzing the Approximation Error of the Fast Graph Fourier Transform, in: 51st Asilomar Conference on Signals, Systems, and Computers (ACSSC 2017), Monterey, California, United States, October 2017.
https://hal.archives-ouvertes.fr/hal-01627434 -
110A. Liutkus, R. Badeau.
Generalized Wiener filtering with fractional power spectrograms, in: Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, IEEE, 2015, pp. 266–270. -
111C. Louboutin, F. Bimbot.
Description of Chord Progressions by Minimal Transport Graphs Using the System & Contrast Model, in: ICMC 2016 - 42nd International Computer Music Conference, Utrecht, Netherlands, September 2016.
https://hal.archives-ouvertes.fr/hal-01421023 -
112C. Louboutin, F. Bimbot.
Modeling the multiscale structure of chord sequences using polytopic graphs, in: 18th International Society for Music Information Retrieval Conference, Suzhou, China, October 2017.
https://hal.archives-ouvertes.fr/hal-01653455 -
113C. Louboutin, F. Bimbot.
Polytopic Graph of Latent Relations: A Multiscale Structure Model for Music Segments, in: 6th International Conference on Mathematics and Computation in Music (MCM 2017), Mexico City, Mexico, O. A. Agustín-Aquino, E. Lluis-Puebla, M. Montiel (editors), Lecture Notes in Computer Science book series, Springer, June 2017, vol. 10527.
https://hal.archives-ouvertes.fr/hal-01653445 -
114A. Magassouba, N. Bertin, F. Chaumette.
Audio-based robot controlfrom interchannel level difference and absolute sound energy, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'16, Daejeon, South Korea, October 2016, pp. 1992-1999.
https://hal.inria.fr/hal-01355394 -
115A. Magassouba, N. Bertin, F. Chaumette.
Binaural auditory interaction without HRTF for humanoid robots: A sensor-based control approach, in: Workshop on Multimodal Sensor-based Control for HRI and soft manipulation, IROS'2016, Daejeon, South Korea, October 2016.
https://hal.inria.fr/hal-01408422 -
116A. Magassouba, N. Bertin, F. Chaumette.
First applications of sound-based control on a mobile robot equipped with two microphones, in: IEEE Int. Conf. on Robotics and Automation, ICRA'16, Stockholm, Sweden, May 2016.
https://hal.inria.fr/hal-01277589 -
117S. Nam, R. Gribonval.
Physics-driven structured cosparse modeling for source localization, in: Acoustics, Speech and Signal Processing, IEEE International Conference on (ICASSP 2012), Kyoto, Japon, IEEE, 2012.
http://hal.inria.fr/hal-00659405 -
118S. Noorzadeh, P. Maurel, T. Oberlin, R. Gribonval, C. Barillot.
Multi-modal EEG and fMRI Source Estimation Using Sparse Constraints, in: MICCAI 2017 - 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec, Canada, September 2017. [ DOI : 10.1007/978-3-319-66182-7_51 ]
https://hal.inria.fr/hal-01586495 -
119A. A. Nugraha, A. Liutkus, E. Vincent.
Multichannel audio source separation with deep neural networks, in: IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, vol. 24, no 9, pp. 1652–1664. -
120A. Ozerov, C. Févotte.
Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation, in: IEEE Transactions on Audio, Speech, and Language Processing, 2010, vol. 18, no 3, pp. 550–563. -
121G. Puy, M. E. Davies, R. Gribonval.
Recipes for stable linear embeddings from Hilbert spaces to , in: IEEE Transactions on Information Theory, 2017, Submitted in 2015. [ DOI : 10.1109/TIT.2017.2664858 ]
https://hal.inria.fr/hal-01203614 -
122Y. Salaün, E. Vincent, N. Bertin, N. Souviraà-Labastie, X. Jaureguiberry, D. Tran, F. Bimbot.
The Flexible Audio Source Separation Toolbox Version 2.0, May 2014, ICASSP.
https://hal.inria.fr/hal-00957412