Section: Overall Objectives
Signal processing and learning methods for visual data representation and compression
Dimensionality reduction has been at the core of signal and image processing methods, for a number of years now, hence have obviously always been central to the research of Sirocco. These methods encompass sparse and low rank models, random low-dimensional projections in a compressive sensing framework, and graphs as a way of representing data dependencies and defining the support for learning and applying signal de-correlating transforms. The study of these models and signal processing tools is even more compelling for designing efficient algorithms for processing the large volumes of high-dimensionality data produced by novel imaging modalities. The models need to be adapted to the data at hand through learning of dictionaries or of neural networks. In order to define and learn local low-dimensional or sparse models, it is necessay to capture and understand the underlying data geometry, e.g. with the help of manifolds and manifold clustering tools. It also requires exploiting the scene geometry with the help of disparity or depth maps, or its variations in time via coarse or dense scene flows.