EN FR
EN FR


Section: Research Program

Scientific and Societal Stakes

In the HPC context, simulation is already considered as a third pillar of science with experiments and theory. Additional computing power means more scientific results, and the possibility to open new fields of simulation requiring more performance, such as multi-scale, multi-physics simulations. Many scientific domains able to take advantage of Exascale computers, these “Grand Challenges” cover large panels of science, from seismic, climate, molecular dynamics, theoretical and astrophysics physics... Besides, embedded applications are also able to take advantage of these performance increase. There is still an on-going trend where dedicated hardware is progressively replaced by off-the-shelf components, adding more adaptability and lowering the cost of devices. For instance, Error Correcting Codes in cell phones are still hardware chips, but with the forthcoming 5G protocol, new software and adaptative solutions relying on low power multicores are also explored. New usages are also appearing, relying on the fact that large computing capacities are becoming more affordable and widespread. This is the case for instance with Deep Neural Networks where the training phase can be done on supercomputers and then used in embedded mobile systems. The same consideration applies for big data problems, of internet of things, where small sensors provide large amount of data that need to be processed in short amount of time. Even though the computing capacities required for such applications are in general a different scale from HPC infrastructures, there is still a need in the future for high performance computing applications.

However, the outcome of new scientific results and the development of new usages for mobile, embedded systems will be hindered by the complexity and high level of expertise required to tap the performance offered by future parallel heterogeneous architectures.