Bibliography
Major publications by the team in recent years
-
1C. Adam-Bourdarios, G. Cowan, C. Germain-Renaud, I. Guyon, B. Kégl, D. Rousseau.
The Higgs Machine Learning Challenge, in: Journal of Physics: Conference Series, December 2015, vol. 664, no 7. [ DOI : 10.1088/1742-6596/664/7/072015 ]
https://hal.inria.fr/hal-01745998 -
2L. Da Costa, Á. Fialho, M. Schoenauer, M. Sebag.
Adaptive Operator Selection with Dynamic Multi-Armed Bandits, in: Proc. Genetic and Evolutionary Computation Conference (GECCO), ACM, 2008, pp. 913-920, ACM-SIGEVO 10-years Impact Award. [ DOI : 10.1145/1389095.1389272 ]
https://hal.inria.fr/inria-00278542 -
3C. Furtlehner, A. Decelle.
Cycle-based Cluster Variational Method for Direct and Inverse Inference, in: Journal of Statistical Physics, August 2016, vol. 164, no 3, pp. 531–574.
https://hal.inria.fr/hal-01214155 -
4S. Gelly, M. Schoenauer, M. Sebag, O. Teytaud, L. Kocsis, D. Silver, C. Szepesvari.
The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions, in: Communications- ACM, 2012, vol. 55, no 3, pp. 106-113.
https://hal.inria.fr/hal-00695370 -
5O. Goudet, D. Kalainathan, P. Caillou, D. Lopez-Paz, I. Guyon, M. Sebag.
Learning Functional Causal Models with Generative Neural Networks, in: Explainable and Interpretable Models in Computer Vision and Machine Learning, Springer Series on Challenges in Machine Learning, Springer International Publishing, 2018, https://arxiv.org/abs/1709.05321. [ DOI : 10.1007/978-3-319-98131-4 ]
https://hal.archives-ouvertes.fr/hal-01649153 -
6T. Lucas, C. Tallec, J. Verbeek, Y. Ollivier.
Mixed batches and symmetric discriminators for GAN training, in: ICML - 35th International Conference on Machine Learning, Stockholm, Sweden, July 2018.
https://hal.inria.fr/hal-01791126 -
7E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez.
Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification, in: IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no 2, pp. 645-657.
https://hal.inria.fr/hal-01369906 -
8M. Mısır, M. Sebag.
Alors: An algorithm recommender system, in: Artificial Intelligence, 2017, vol. 244, pp. 291-314, Published on-line Dec. 2016.
https://hal.inria.fr/hal-01419874 -
9Y. Ollivier, L. Arnold, A. Auger, N. Hansen.
Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles, in: Journal of Machine Learning Research, 2017, vol. 18, no 18, pp. 1-65.
https://hal.inria.fr/hal-01515898 -
10X. Zhang, C. Furtlehner, C. Germain-Renaud, M. Sebag.
Data Stream Clustering with Affinity Propagation, in: IEEE Transactions on Knowledge and Data Engineering, 2014, vol. 26, no 7, 1 p.
https://hal.inria.fr/hal-00862941
Doctoral Dissertations and Habilitation Theses
-
11F. Gonard.
Cold-start recommendation : from Algorithm Portfolios to Job Applicant Matching, Université Paris-Saclay, May 2018.
https://tel.archives-ouvertes.fr/tel-01825220 -
12T. Schmitt.
Collaborative Matching of Job Openings and Job Seekers, Université Paris-Saclay, June 2018.
https://tel.archives-ouvertes.fr/tel-01886623
Articles in International Peer-Reviewed Journals
-
13G. Bastin, P. Tubaro.
Le moment big data des sciences sociales, in: Revue française de sociologie, September 2018, vol. 59, no 3, pp. 375-394. [ DOI : 10.3917/rfs.593.0375 ]
https://hal.archives-ouvertes.fr/hal-01885416 -
14K. Caye, F. Jay, O. Michel, O. François.
Fast Inference of Individual Admixture Coefficients Using Geographic Data, in: Annals Of Applied Statistics, 2018.
https://hal.archives-ouvertes.fr/hal-01676712 -
15A. Decelle, G. Fissore, C. Furtlehner.
Thermodynamics of Restricted Boltzmann Machines and Related Learning Dynamics, in: Journal of Statistical Physics, January 2018, vol. 172, no 6, pp. 1576-1608. [ DOI : 10.1007/s10955-018-2105-y ]
https://hal.inria.fr/hal-01675310 -
16S. Escalera, X. Baró, I. Guyon, H. J. Escalante.
Guest Editorial: Apparent Personality Analysis, in: IEEE Transactions on Affective Computing, January 2018, vol. 9, no 3, pp. 299-302. [ DOI : 10.1007/978-3-319-98131-4 ]
https://hal.inria.fr/hal-01991636 -
17S. Escalera, X. Baró, I. Guyon, H. J. Escalante, G. Tzimiropoulos, M. Valstar, M. Pantic, J. Cohn, T. Kanade.
Guest Editorial: The Computational Face, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, November 2018, vol. 40, no 11, pp. 2541-2545. [ DOI : 10.1109/tpami.2018.2869610 ]
https://hal.inria.fr/hal-01991654 -
18F. Pallotti, P. Tubaro, A. A. Casilli, T. W. Valente.
"You see yourself like in a mirror”: The effects of internet-mediated personal networks on body image and eating disorders, in: Health Communication, 2018, vol. 33, no 9, pp. 1166-1176, Published online on 6 July 2017. [ DOI : 10.1080/10410236.2017.1339371 ]
https://hal.archives-ouvertes.fr/hal-01520138 -
19N. Shah, B. Tabibian, K. Muandet, I. Guyon, U. Von Luxburg.
Design and Analysis of the NIPS 2016 Review Process, in: Journal of Machine Learning Research, 2018, vol. 19, pp. 1 - 34.
https://hal.inria.fr/hal-01991580 -
20P. Taillandier, B. Gaudou, A. Grignard, Q.-N. Huynh, N. Marilleau, P. Caillou, D. Philippon, A. Drogoul.
Building, composing and experimenting complex spatial models with the GAMA platform, in: GeoInformatica, December 2018.
https://hal.inria.fr/hal-01975984
International Conferences with Proceedings
-
21M.-L. Cauwet, J. Decock, J. Liu, O. Teytaud.
Direct Model Predictive Control: A Theoretical and Numerical Analysis, in: PSCC 2018 - XX Power Systems Computation Conference, Dublin, Ireland, June 2018.
https://hal.inria.fr/hal-01701623 -
22M.-L. Cauwet, O. Teytaud.
Surprising strategies obtained by stochastic optimization in partially observable games, in: CEC 2018 - IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil, July 2018, pp. 1-8, https://arxiv.org/abs/1807.01877.
https://hal.inria.fr/hal-01829721 -
23B. Donnot, I. Guyon, M. Schoenauer, A. Marot, P. Panciatici.
Anticipating contingengies in power grids using fast neural net screening, in: IEEE International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, Proc. 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, July 2018, https://arxiv.org/abs/1805.02608.
https://hal.archives-ouvertes.fr/hal-01783669 -
24B. Donnot, I. Guyon, M. Schoenauer, A. Marot, P. Panciatici.
Fast Power system security analysis with Guided Dropout, in: 26th European Symposium on Artificial Neural Networks, Bruges, Belgium, Electronic Proceedings ESANN 2018, April 2018, https://arxiv.org/abs/1801.09870.
https://hal.archives-ouvertes.fr/hal-01695793 -
25V. Estrade, C. Germain, I. Guyon, D. Rousseau.
Systematics aware learning: a case study in High Energy Physics, in: ESANN 2018 - 26th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 2018.
https://hal.inria.fr/hal-01715155 -
26S. Giffard-Roisin, D. Gagne, A. Boucaud, B. Kégl, M. Yang, G. Charpiat, C. Monteleoni.
The 2018 Climate Informatics Hackathon: Hurricane Intensity Forecast, in: 8th International Workshop on Climate Informatics, Boulder, CO, United States, PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON CLIMATE INFORMATICS: CI 2018, September 2018, 4 p.
https://hal.archives-ouvertes.fr/hal-01924336 -
27N. Girard, G. Charpiat, Y. Tarabalka.
Aligning and Updating Cadaster Maps with Aerial Images by Multi-Task, Multi-Resolution Deep Learning, in: Asian Conference on Computer Vision (ACCV), Perth, Australia, Proceedings, December 2018.
https://hal.archives-ouvertes.fr/hal-01923568 -
28T. Lucas, C. Tallec, J. Verbeek, Y. Ollivier.
Mixed batches and symmetric discriminators for GAN training, in: ICML - 35th International Conference on Machine Learning, Stockholm, Sweden, July 2018.
https://hal.inria.fr/hal-01791126 -
29G. Ramírez, E. Villatoro, B. Ionescu, H. J. Escalante, S. Escalera, M. Larson, H. Müller, I. Guyon.
Overview of the Multimedia Information Processing for Personality and Social Networks Analysis Contest, in: International Conference on Pattern Recognition (ICPR), Beijing, China, T. Tan, J. Kittler, A. Jain (editors), IEEE, August 2018, pp. 127-139.
https://hal.inria.fr/hal-01991599 -
30D. Rousseau, S. Amrouche, P. Calafiura, V. Estrade, S. Farrell, C. Germain, V. Gligorov, T. Golling, H. Gray, I. Guyon, M. Hushchyn, V. Innocente, M. Kiehn, A. Salzburger, A. Ustyuzhanin, J.-R. V. Vlimant, Y. Yilmaz.
The TrackML challenge, in: NIPS 2018 - 32nd Annual Conference on Neural Information Processing Systems, Montreal, Canada, December 2018, pp. 1-23.
https://hal.inria.fr/hal-01745714 -
31A. Schoenauer Sebag, L. Heinrich, M. Schoenauer, M. Sebag, L. Wu, S. Altschuler.
Multi-Domain Adversarial Learning, in: ICLR'19 - Seventh annual International Conference on Learning Representations, New Orleans, United States, Proc. ICLR 2019, Tara Sainath, May 2019.
https://hal.inria.fr/hal-01968180 -
32C. Tallec, Y. Ollivier.
Can recurrent neural networks warp time?, in: International Conference on Learning Representation 2018, Vancouver, France, April 2018.
https://hal.inria.fr/hal-01812064 -
33P. Tubaro.
Emergent relational structures at a "sharing economy" festival, in: The 7th International Conference on Complex Networks and Their Applications, Cambridge, United Kingdom, Springer, December 2018, vol. 2, pp. 559-571.
https://hal.archives-ouvertes.fr/hal-01947911 -
34A. Zampieri, G. Charpiat, N. Girard, Y. Tarabalka.
Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing, in: European Conference on Computer Vision (ECCV), Munich, Germany, V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (editors), Computer Vision – ECCV 2018, Springer International Publishing, September 2018, pp. 679-696.
https://hal.inria.fr/hal-01849389
Conferences without Proceedings
-
35S. Giffard-Roisin, M. Yang, G. Charpiat, B. Kégl, C. Monteleoni.
Deep Learning for Hurricane Track Forecasting from Aligned Spatio-temporal Climate Datasets, in: Modeling and decision-making in the spatiotemporal domain NIPS workhop, Montréal, Canada, December 2018.
https://hal.archives-ouvertes.fr/hal-01905408 -
36S. Giffard-Roisin, M. Yang, G. Charpiat, B. Kégl, C. Monteleoni.
Fused Deep Learning for Hurricane Track Forecast from Reanalysis Data, in: Climate Informatics Workshop Proceedings 2018, Boulder, United States, September 2018.
https://hal.archives-ouvertes.fr/hal-01851001 -
37Z. Liu, O. Bousquet, A. Elisseeff, S. Escalera, I. Guyon, J. Jacques, A. Pavao, D. Silver, L. Sun-Hosoya, S. Treguer, W.-W. Tu, J. Wang, Q. Yao.
AutoDL Challenge Design and Beta Tests-Towards automatic deep learning, in: CiML workshop @ NIPS2018, Montreal, Canada, December 2018.
https://hal.archives-ouvertes.fr/hal-01906226 -
38J. G. Madrid, H. Jair Escalante, E. F. Morales, W.-W. Tu, Y. Yu, L. Sun-Hosoya, I. Guyon, M. Sebag.
Towards AutoML in the presence of Drift: first results, in: Workshop AutoML 2018 @ ICML/IJCAI-ECAI, Stockholm, Sweden, Pavel Brazdil, Christophe Giraud-Carrier, and Isabelle Guyon, July 2018.
https://hal.inria.fr/hal-01966962 -
39A. Marot, B. Donon, I. Guyon, B. Donnot.
Learning To Run a Power Network Competition, in: CiML Workshop, NeurIPS, Montréal, Canada, December 2018.
https://hal.archives-ouvertes.fr/hal-01968295 -
40H. Rakotoarison, M. Sebag.
AutoML with Monte Carlo Tree Search, in: Workshop AutoML 2018 @ ICML/IJCAI-ECAI, Stockholm, Sweden, Pavel Brazdil, Christophe Giraud-Carrier, and Isabelle Guyon, July 2018.
https://hal.inria.fr/hal-01966957 -
41H. Richard, A. Pinho, B. Thirion, G. Charpiat.
Optimizing deep video representation to match brain activity, in: CCN 2018 - Conference on Cognitive Computational Neuroscience, Philadelphia, United States, September 2018, https://arxiv.org/abs/1809.02440.
https://hal.archives-ouvertes.fr/hal-01868735 -
42L. Sun-Hosoya, I. Guyon, M. Sebag.
Lessons learned from the AutoML challenge, in: Conférence sur l'Apprentissage Automatique 2018, Rouen, France, June 2018.
https://hal.inria.fr/hal-01811454 -
43C. Tallec, Y. Ollivier.
Unbiased online recurrent optimization, in: International Conference On Learning Representation, Vancouver, Canada, April 2018.
https://hal.archives-ouvertes.fr/hal-01972587
Scientific Books (or Scientific Book chapters)
-
44O. Goudet, D. Kalainathan, P. Caillou, D. Lopez-Paz, I. Guyon, M. Sebag.
Learning Functional Causal Models with Generative Neural Networks, in: Explainable and Interpretable Models in Computer Vision and Machine Learning, Springer Series on Challenges in Machine Learning, Springer International Publishing, 2018, https://arxiv.org/abs/1709.05321. [ DOI : 10.1007/978-3-319-98131-4 ]
https://hal.archives-ouvertes.fr/hal-01649153 -
45I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray, M. Saeed, M. Sebag, A. Statnikov, W.-W. Tu, E. Viegas.
Analysis of the AutoML Challenge series 2015-2018, in: AutoML: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, J. Vanschoren (editors), The Springer Series on Challenges in Machine Learning, Springer Verlag, 2018.
https://hal.archives-ouvertes.fr/hal-01906197
Books or Proceedings Editing
-
46G. Bastin, P. Tubaro (editors)
Big data, sociétés et sciences sociales, Presses de Sciences Po, September 2018, vol. 59, no 3.
https://hal.archives-ouvertes.fr/hal-01885457 -
47H. J. Escalante, S. Escalera, I. Guyon, X. Baró, Y. Güçlütürk, U. Güçlü, M. A. J. van Gerven (editors)
Explainable and interpretable models in computer vision and machine learning, The Springer Series on Challenges in Machine Learning, Springer Verlag, January 2018. [ DOI : 10.1007/978-3-319-98131-4 ]
https://hal.inria.fr/hal-01991623 -
48E. Lutton, P. Legrand, P. Parrend, N. Monmarché, M. Schoenauer (editors)
Artificial Evolution, 13th International Conference, Evolution Artificielle, EA 2017, Paris, France, October 25-27, 2017,Revised Selected Papers, Artificial Evolution, Springer, March 2018, vol. LNCS - Lecture Notes in Computer Science, no 10764. [ DOI : 10.1007/978-3-319-78133-4 ]
https://hal.inria.fr/hal-01910443
Internal Reports
-
49C. Furtlehner, J.-M. Lasgouttes, A. Attanasi, L. Meschini, M. Pezzulla.
Spatio-temporal Probabilistic Short-term Forecasting on Urban Networks, Inria Saclay, équipe TAU ; Inria de Paris, équipe RITS ; PTV-SISTeMA, December 2018, no RR-9236.
https://hal.inria.fr/hal-01964270
Scientific Popularization
-
50C. Villani, M. Schoenauer, Y. Bonnet, C. Berthet, A.-C. Cornut, F. Levin, B. Rondepierre.
Donner un sens à l'intelligence artificielle : Pour une stratégie nationale et européenne, Mission Villani sur l’intelligence artificielle, March 2018.
https://hal.inria.fr/hal-01967551
Other Publications
-
51M. A. Barry, V. Berthier, M.-C. Cambourieux, R. Pollès, B. D. Wilts, O. Teytaud, E. Centeno, N. Biais, A. Moreau.
Evolutionary algorithms converge towards evolved biological photonic structures, August 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01856961 -
52A. A. Casilli, P. Tubaro.
Notre vie privée, un concept négociable, Le Monde, January 2018.
https://hal.archives-ouvertes.fr/hal-01885452 -
53B. Donnot.
Learning To Run a Power Network Competition - Poster, December 2018, CiML Workshop, NeurIPS, Poster.
https://hal.archives-ouvertes.fr/hal-01978748 -
54B. Donnot, I. Guyon, Z. Liu, M. Schoenauer, A. Marot, P. Panciatici.
Latent Surgical Interventions in Residual Neural Networks, October 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01906170 -
55B. Donnot, I. Guyon, A. Marot, M. Schoenauer, P. Panciatici.
Optimization of computational budget for power system risk assessment, May 2018, https://arxiv.org/abs/1805.01174 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01783685 -
56H. J. Escalante, H. Kaya, A. A. Salah, S. Escalera, Y. Gucluturk, U. Güçlü, X. Baró, I. Guyon, J. J. Junior, M. Madadi, S. Ayache, E. Viegas, F. Gurpinar, A. S. Wicaksana, C. C. S. Liem, M. A. J. van Gerven, R. van Lier.
Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos, January 2019, https://arxiv.org/abs/1802.00745 - Preprint submitted to IJCV.
https://hal.inria.fr/hal-01991652 -
57D. Kalainathan, O. Goudet, I. Guyon, D. Lopez-Paz, M. Sebag.
SAM: Structural Agnostic Model, Causal Discovery and Penalized Adversarial Learning, August 2018, https://arxiv.org/abs/1803.04929 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01864239 -
58J. Lehman, J. Clune, D. Misevic, C. Adami, J. Beaulieu, P. J. Bentley, S. Bernard, G. Beslon, D. M. Bryson, N. Cheney, A. Cully, S. Doncieux, F. C. Dyer, K. O. Ellefsen, R. Feldt, S. Fischer, S. Forrest, A. Frenoy, C. Gagneé, L. Le Goff, L. M. Grabowski, B. Hodjat, L. Keller, C. Knibbe, P. Krcah, R. E. Lenski, H. Lipson, R. MacCurdy, C. Maestre, R. Miikkulainen, S. Mitri, D. E. Moriarty, J.-B. Mouret, A. D. Nguyen, C. Ofria, M. Parizeau, D. Parsons, R. T. Pennock, W. F. Punch, T. S. Ray, M. Schoenauer, E. Shulte, K. Sims, K. O. Stanley, F. Taddei, D. Tarapore, S. Thibault, W. Weimer, R. Watson, J. Yosinksi.
The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities, March 2018, https://arxiv.org/abs/1803.03453 - working paper or preprint.
https://hal.inria.fr/hal-01735473 -
59S. Liégeois, O. François, F. Jay.
Dimension reduction adapted to paleogenomics, September 2018, Paris-Saclay Junior Conference on Data Science and Engineering, Poster.
https://hal.archives-ouvertes.fr/hal-01978650 -
60A. A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth.
Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider, January 2019, https://arxiv.org/abs/1808.00911 - working paper or preprint.
https://hal.inria.fr/hal-01976256 -
61D. Rousseau, S. Amrouche, P. Calafiura, V. Estrade, S. Farrell, C. Germain, V. Gligorov, T. Golling, H. Gray, I. Guyon, M. Hushchyn, V. Innocente, M. Kiehn, A. Salzburger, A. Ustyuzhanin, J.-R. V. Vlimant, Y. Yilmaz.
The TrackML Particle Tracking Challenge, July 2018, The document describes the challenge data, task and organization.
https://hal.inria.fr/hal-01680537 -
62L. Sun-Hosoya, I. Guyon, M. Sebag.
ActivMetaL: Algorithm Recommendation with Active Meta Learning, September 2018, IAL 2018 workshop, ECML PKDD, Poster.
https://hal.archives-ouvertes.fr/hal-01931262 -
63A. Zampieri, G. Charpiat, Y. Tarabalka.
Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing, February 2018, https://arxiv.org/abs/1802.09816 - working paper or preprint.
https://hal.inria.fr/hal-01718263
-
64I. Guyon et al. (editor)
Cause Effect Pairs in Machine Learning, Springer, 2019, In preparation. -
65C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau.
How Machine Learning won the Higgs Boson Challenge, in: Proc. European Symposium on ANN, CI and ML, 2016. -
66C. Adam-Bourdarios, G. Cowan, C. Germain-Renaud, I. Guyon, B. Kégl, D. Rousseau.
The Higgs Machine Learning Challenge, in: Journal of Physics: Conference Series, 2015, vol. 664, no 7. [ DOI : 10.1088/1742-6596/664/7/072015 ]
https://hal.inria.fr/hal-01745998 -
67A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese.
Social LSTM: Human Trajectory Prediction in Crowded Spaces, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 961–971. -
68D. J. Amit, H. Gutfreund, H. Sompolinsky.
Statistical Mechanics of Neural Networks Near Saturation, in: Annals of Physics, 1987, vol. 173, pp. 30-67. -
69C. Anderson.
The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, 2008, Wired Magazine.
https://www.wired.com/2008/06/pb-theory/ -
70W. Banzhaf, P. Nordin, R. Keller, F. Francone.
Genetic Programming — An Introduction On the Automatic Evolution of Computer Programs and Its Applications, Morgan Kaufmann, 1998. -
71N. Belkhir.
Per Instance Algorithm Configuration for Continuous Black Box Optimization, Université Paris-Saclay, November 2017.
https://hal.inria.fr/tel-01669527 -
72N. Belkhir, J. Dréo, P. Savéant, M. Schoenauer.
Per instance algorithm configuration of CMA-ES with limited budget, in: Proc. ACM-GECCO, 2017, pp. 681-688.
https://hal.inria.fr/hal-01613753 -
73I. Bello, B. Zoph, V. Vasudevan, Q. V. Le.
Neural Optimizer Search with Reinforcement Learning, in: Proceedings of the 34th International Conference on Machine Learning, ICML, 2017, pp. 459–468.
http://proceedings.mlr.press/v70/bello17a.html -
74S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. W. Vaughan.
A theory of learning from different domains, in: Machine Learning, 2018, vol. 79, no 1, pp. 151–175.
http://link.springer.com/10.1007/s10994-009-5152-4 -
75J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl.
Algorithms for Hyper-Parameter Optimization, in: 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), J. Shawe-Taylor et al. (editor), Advances in Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2011, vol. 24. -
76E. Bourdu, M.-M. Pérétié, M. Richer.
La qualité de vie au travail : un levier de compétitivité, Presses des Mines, 2016. -
77J. Bruna, S. Mallat.
Invariant Scattering Convolution Networks, in: IEEE Trans. Pattern Anal. Mach. Intell., 2013, vol. 35, no 8, pp. 1872–1886. -
78Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, J. Choo.
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, in: CoRR, 2017, vol. abs/1711.09020.
http://arxiv.org/abs/1711.09020 -
79J.-J. Christophe, J. Decock, O. Teytaud.
Direct model predictive control, in: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2014.
https://hal.inria.fr/hal-00958192 -
80R. Couillet, M. Debbah.
Random matrix methods for wireless communications, Cambridge University Press, 2011. -
81David Silver et al..
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, in: CoRR, 2017, vol. abs/1712.01815.
http://arxiv.org/abs/1712.01815 -
82M. DeMaria, M. Mainelli, L. K. Shay, J. A. Knaff, J. Kaplan.
Further improvements to the statistical hurricane intensity prediction scheme (SHIPS), in: Weather and Forecasting, 2005, vol. 20, no 4, pp. 531–543. -
83A. Decelle, G. Fissore, C. Furtlehner.
Spectral dynamics of learning in restricted Boltzmann machines, in: EPL (Europhysics Letters), 2017, vol. 119, no 6, 60001 p. -
84L. Dinh, J. Sohl-Dickstein, S. Bengio.
Density estimation using Real NVP, in: Int. Conf. on Learning Representations (ICLR), 2017. -
85T. Duriez, S. L. Brunton, B. R. Noack.
Introduction, Springer International Publishing, 2017, pp. 1–10. -
86D. K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R. P. Adams.
Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: NIPS, 2015, pp. 2224–2232. -
87M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion.
Seeing it all: Convolutional network layers map the function of the human visual system, in: NeuroImage, 2016. [ DOI : 10.1016/j.neuroimage.2016.10.001 ]
https://hal.inria.fr/hal-01389809 -
88T. v. Erven, P. Grunwald, S. de Rooij.
Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma: Catching up Faster, in: Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, vol. 74, no 3, pp. 361–417.
http://doi.wiley.com/10.1111/j.1467-9868.2011.01025.x -
89H. J. Escalante, I. Guyon, S. Escalera, J. Jacques, M. Madadi, X. Baró, S. Ayache, E. Viegas, Y. Güçlütürk, U. Güçlü, M. A. J. van Gerven, R. van Lier.
Design of an Explainable Machine Learning Challenge for Video Interviews, in: IJCNN 2017 - 30th International Joint Conference on Neural Networks, Anchorage, AK, United States, Neural Networks (IJCNN), 2017 International Joint Conference on, IEEE, 2017, pp. 1-8.
https://hal.inria.fr/hal-01668386 -
90S. Escalera, X. Baró, H. J. Escalante, I. Guyon.
ChaLearn looking at people: A review of events and resources, in: 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 1594-1601. -
91S. Falkner, A. Klein, F. Hutter.
BOHB: Robust and Efficient Hyperparameter Optimization at Scale, in: Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 2018, pp. 1436–1445. -
92M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter.
Efficient and Robust Automated Machine Learning, in: Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (editors), Curran Associates, Inc., 2015, pp. 2962–2970.
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf -
93L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, M. Pontil.
Bilevel Programming for Hyperparameter Optimization and Meta-Learning, in: Proc. 35th International Conference on Machine Learning, ICML, J. G. Dy, A. Krause (editors), JMLR Workshop and Conference Proceedings, JMLR.org, 2018, vol. 80, pp. 1563–1572.
http://proceedings.mlr.press/v80/franceschi18a.html -
94C. Furtlehner, A. Decelle.
Cycle-Based Cluster Variational Method for Direct and Inverse Inference, in: Journal of Statistical Physics, 2016, vol. 164, no 3, pp. 531–574. -
95C. Furtlehner, M. Sebag, X. Zhang.
Scaling analysis of affinity propagation, in: Physical Review E, 2010, vol. 81, no 6, 066102 p. -
96M. Gabrié, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, L. Zdeborová.
Entropy and mutual information in models of deep neural networks, in: CoRR, 2018, vol. abs/1805.09785.
http://arxiv.org/abs/1805.09785 -
97Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky.
Domain-Adversarial Training of Neural Networks, in: Journal of Machine Learning Research, 2016, vol. 17, no 59, pp. 1-35. -
98K. Garimella, G. D. F. Morales, A. Gionis, M. Mathioudakis.
Political Discourse on Social Media: Echo Chambers, Gatekeepers, and the Price of Bipartisanship, in: WWW, ACM, 2018, pp. 913–922. -
99J. Giles.
Computational social science: Making the links, in: Nature - News, 2012, vol. 488, no 7412, pp. 448-450. -
100F. Gonard, M. Schoenauer, M. Sebag.
ASAP.V2 and ASAP.V3: Sequential optimization of an Algorithm Selector and a Scheduler, in: Open Algorithm Selection Challenge 2017 , Brussels, Belgium, Proceedings of Machine Learning Research, September 2017, vol. 79, pp. 8-11.
https://hal.inria.fr/hal-01659700 -
101I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio.
Generative Adversarial Nets, in: Advances in Neural Information Processing Systems 27, 2014, pp. 2672–2680. -
102I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio.
Generative Adversarial Nets, in: NIPS 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (editors), Curran Associates, Inc., 2014, pp. 2672–2680. -
103P. Grunwald.
The Minimum Description Length Principle, MIT Press, 2007. -
104I. Guyon, C. F. Aliferis, G. F. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, A. R. Statnikov.
Design and Analysis of the Causation and Prediction Challenge, in: WCCI Causation and Prediction Challenge, JMLR W-CP, 2008, pp. 1–33. -
105I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macia, B. Ray, M. Saeed, A. Statnikov.
Design of the 2015 ChaLearn AutoML challenge, in: Proc. IJCNN, IEEE, 2015, pp. 1–8. -
106I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macia, B. Ray, M. Saeed, A. Statnikov.
Design of the 2015 ChaLearn AutoML challenge, in: Proc. IJCNN, IEEE, 2015, pp. 1–8. -
107I. Guyon, L. Bottou, B. Schölkopf, A. Statnikov, E. Viegas, J. M. Robins.
NIPS workshop on causality, 2013.
http://clopinet.com/isabelle/Projects/NIPS2013/ -
108U. Güçlü, M. A. J. van Gerven.
Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream, in: Journal of Neuroscience, 2015, vol. 35, no 27, pp. 10005–10014. [ DOI : 10.1523/JNEUROSCI.5023-14.2015 ]
http://www.jneurosci.org/content/35/27/10005 -
109D. Hernández-Lobato, P. Morales-Mombiela, D. Lopez-Paz, A. Suárez.
Non-linear Causal Inference using Gaussianity Measures, in: Journal of Machine Learning Research, 2016, vol. 17, no 28, pp. 1-39.
http://jmlr.org/papers/v17/14-375.html -
110H. H. Hoos.
Programming by Optimization, in: Commun. ACM, 2012, vol. 55, no 2, pp. 70–80. -
111D. Hothersall.
History of Psychology, McGraw-Hill, 2004. -
112G. W. Imbens, D. B. Rubin.
Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction, Cambridge University Press, 2015. -
113D. Kalainathan, O. Goudet, P. Caillou, M. Sebag, P. Tubaro, E. Bourdu, T. Weil.
Portraits de travailleurs, Presses des Mines, 2017. -
114D. Kalainathan, O. Goudet, P. Caillou, M. Sebag, P. Tubaro.
Conditions objectives de travail et ressenti des individus : le rôle du management, 2017, 12 p, Synthèse n. 14 de ”La Fabrique de l'Industrie”.
https://hal.inria.fr/hal-01742592 -
115W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, A. Zisserman.
The Kinetics Human Action Video Dataset, in: arXiv e-prints, May 2017, arXiv:1705.06950 p. -
116D. Kingma, M. Welling.
Auto-encoding variational Bayes., in: Int. Conf. on Learning Representations (ICLR), 2014. -
117L. Kotthoff.
Algorithm Selection for Combinatorial Search Problems: A Survey, in: Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, C. Bessiere, L. De Raedt, L. Kotthoff, S. Nijssen, B. O'Sullivan, D. Pedreschi (editors), Lecture Notes in Computer Science, Springer, 2016, pp. 149–190. -
118A. Krizhevsky, I. Sutskever, G. E. Hinton.
ImageNet Classification with Deep Convolutional Neural Networks, in: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS'12, 2012, pp. 1097–1105. -
119D. Lazer, A. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, M. Van Alstyne.
Life in the network: the coming age of computational social science, in: Science, 2009, vol. 323, no 5915, pp. 721–723. -
120Y. LeCun.
Deep Learning est mort. Vive Differentiable Programming!, 2018, Facebook Post.
https://www.facebook.com/yann.lecun/posts/10155003011462143 -
121J. Lehman, K. O. Stanley.
Abandoning Objectives: Evolution Through the Search for Novelty Alone, in: Evol. Comput., 2011, vol. 19, no 2, pp. 189–223.
http://dx.doi.org/10.1162/EVCO_a_00025 -
122J. Z. Liang, E. Meyerson, R. Miikkulainen.
Evolutionary architecture search for deep multitask networks, in: Proc. ACM-GECCO, H. E. Aguirre, K. Takadama (editors), ACM, 2018, pp. 466–473.
http://doi.acm.org/10.1145/3205455.3205489 -
123H. Lipson, J. B. Pollack.
Automatic design and manufacture of robotic lifeforms, in: Nature Letters, 2000, vol. 406, pp. 974–978. -
124D. Lopez-Paz, K. Muandet, B. Schölkopf, I. O. Tolstikhin.
Towards a Learning Theory of Cause-Effect Inference, in: Proceedings of the 32nd International Conference on Machine Learning, ICML, F. R. Bach, D. M. Blei (editors), 2015, pp. 1452–1461.
http://jmlr.org/proceedings/papers/v37/lopez-paz15.html -
125C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, M. Welling.
Relaxed Quantization for Discretized Neural Networks, in: CoRR, 2018, vol. abs/1810.01875.
http://arxiv.org/abs/1810.01875 -
126C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, M. Welling.
Relaxed Quantization for Discretized Neural Networks, in: Int. Conf. on Learning Representations (ICLR), 2019. -
127E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez.
Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial Image Labeling Benchmark, in: IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Fort Worth, United States, July 2017.
https://hal.inria.fr/hal-01468452 -
128L. Mescheder, A. Geiger, S. Nowozin.
Which Training Methods for GANs do actually Converge?, in: International Conference on Machine Learning, 2018, pp. 3481–3490.
http://proceedings.mlr.press/v80/mescheder18a.html -
129D. Molchanov, A. Ashukha, D. Vetrov.
Variational Dropout Sparsifies Deep Neural Networks, in: ArXiv e-prints, January 2017. -
130M. Mısır, M. Sebag.
Alors: An algorithm recommender system, in: Artificial Intelligence, 2017, vol. 244, pp. 291-314, Published on-line Dec. 2016.
https://hal.inria.fr/hal-01419874 -
131C. O'Neill.
Weapons of Math Destruction, Crown Books, 2016. -
132J. Pearl.
Causality: Models, Reasoning, and Inference (2nd edition), Cambridge University Press, 2009. -
133J. Pearl.
Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution, in: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM, 2018, 3 p.
https://doi.org/10.1145/3159652.3176182 -
134G. Pleiss, M. Raghavan, F. Wu, J. M. Kleinberg, K. Q. Weinberger.
On Fairness and Calibration, in: NIPS, 2017, pp. 5684–5693. -
135M. Raissi.
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations, in: JMLR, 2018, vol. 19, pp. 1–24. -
136S. Ravanbakhsh, J. Schneider, B. Póczos.
Equivariance Through Parameter-Sharing, in: International Conference on Machine Learning, 2017, pp. 2892–2901.
http://proceedings.mlr.press/v70/ravanbakhsh17a.html -
137E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. T. Q. Le, A. Kurakin.
Large-Scale Evolution of Image Classifiers, in: Proc. ICML 2017, 2017.
https://icml.cc/Conferences/2017/Schedule?type=Poster -
138J. R. Rice.
The Algorithm Selection Problem, in: Advances in Computers, 1976, vol. 15, pp. 65 – 118. [ DOI : 10.1016/S0065-2458(08)60520-3 ]
http://www.sciencedirect.com/science/article/pii/S0065245808605203 -
139J. Rissanen.
Information and Complexity in Statistical Modeling, Information Science and Statistics, Springer-Verlag, 2007. -
140P. Rolet, M. Sebag, O. Teytaud.
Boosting Active Learning to Optimality: a Tractable Monte-Carlo, Billiard-based Algorithm, in: ECML, Bled, Slovenia, 2009, pp. 302-317.
https://hal.inria.fr/inria-00433866 -
141T. Sanchez, G. Charpiat, F. Jay.
SPI-DNA: End-to-end Deep Learning Approach for Demographic History Inference, in: Paris-Saclay Junior Conference on Data Science and Engineering, Orsay, France, September 2017.
https://hal.archives-ouvertes.fr/hal-01679385 -
142M. Schmidt, H. Lipson.
Distilling free-form natural laws from experimental data, in: Science, 2009, vol. 324, no 5923, pp. 81–85. -
143T. Schmitt, F. Gonard, P. Caillou, M. Sebag.
Language Modelling for Collaborative Filtering: Application to Job Applicant Matching, in: 29th ICTAI, 2017, pp. 1-8. -
144S. Sigtia, E. Benetos, S. Dixon.
An End-to-End Neural Network for Polyphonic Piano Music Transcription, in: IEEE/ACM Trans. Audio, Speech & Language Processing, 2016, vol. 24, no 5, pp. 927–939. -
145J. Sirignano, K. Spiliopoulos.
DGM: A deep learning algorithm for solving partial differential equations, in: Journal of Computational Physics, 2018, vol. 375, pp. 1339 – 1364. [ DOI : 10.1016/j.jcp.2018.08.029 ]
http://www.sciencedirect.com/science/article/pii/S0021999118305527 -
146I. Stengers.
Another Science Is Possible, Open Humanities Press, 2013. -
147D. H. Stern, R. Herbrich, T. Graepel.
Matchbox: large scale online bayesian recommendations, in: WWW, ACM Press, 2010, 111 p. [ DOI : 10.1145/1526709.1526725 ]
http://portal.acm.org/citation.cfm?doid=1526709.1526725 -
148C. Sunstein, R. Thaler.
Nudge: Improving Decisions about Health, Wealth, and Happiness, Yale University Press, 2008. -
149C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R. Fergus.
Intriguing properties of neural networks, in: CoRR, 2013, vol. abs/1312.6199.
http://arxiv.org/abs/1312.6199 -
150C. Tallec, Y. Ollivier.
Can recurrent neural networks warp time?, in: International Conference on Learning Representations – ICLR, 2018.
https://openreview.net/forum?id=SJcKhk-Ab -
151N. Tishby, N. Zaslavsky.
Deep learning and the information bottleneck principle, in: 2015 IEEE Information Theory Workshop (ITW), 2015, pp. 1-5. -
152S. Triantafillou, I. Tsamardinos.
Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets, in: Journal of Machine Learning Research, 2015, vol. 16, pp. 2147-2205. -
153J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo.
OpenML: networked science in machine learning, in: SIGKDD Explorations, 2013, vol. 15, no 2, pp. 49–60.
https://arxiv.org/abs/1407.7722 -
154Volodymyr Mnih et al..
Human-level control through deep reinforcement learning, in: Nature, 2015, vol. 518, no 7540, pp. 529–533.
https://doi.org/10.1038/nature14236 -
155J. Wan, S. Escalera, G. Anbarjafari, H. J. Escalante, X. Baró, I. Guyon, M. Madadi, J. Allik, C. Lin, Y. Xie.
Results and Analysis of ChaLearn LAP Multi-modal Isolated and Continuous Gesture Recognition, and Real versus Fake Expressed Emotions Challenges, in: International Conference on Computer Vision - ICCV 2017, 2017.
https://hal.inria.fr/hal-01677974 -
156M. Weimer, A. Karatzoglou, Q. Le, A. Smola.
CoFiRank - Maximum Margin Matrix Factorization for Collaborative Ranking, in: Advances in Neural Information Processing Systems, 21st Annual Conference on Neural Information Processing Systems 2007, Vancouver, Canada, December 2007, pp. 222-230, http://books.nips.cc/papers/files/nips20/NIPS2007_0612.pdf.
https://hal.archives-ouvertes.fr/hal-00482740 -
157M. Welling.
Intelligence per Kilowatthour, 2018, Keynote talk @ICML.
https://icml.cc/Conferences/2018/Schedule?showEvent=1866 -
158F. M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens.
The context-tree weighting method: basic properties, in: IEEE Transactions on Information Theory, 1995, vol. 41, no 3, pp. 653-664. -
159X. Zhang, C. Furtlehner, C. Germain-Renaud, M. Sebag.
Data Stream Clustering with Affinity Propagation, in: IEEE Transactions on Knowledge and Data Engineering, 2014, vol. 26, no 7, 1 p.
https://hal.inria.fr/hal-00862941 -
160M. de Bezenac, A. Pajot, P. Gallinari.
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge, in: arXiv preprint arXiv:1711.07970, 2017. -
161A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu.
WaveNet: A Generative Model for Raw Audio, in: CoRR, 2016, vol. abs/1609.03499.
http://arxiv.org/abs/1609.03499