EN FR
EN FR


Section: Overall Objectives

Context and Objectives

The Web became a virtual place where persons and software interact in mixed communities. The Web has the potential of becoming the collaborative space for natural and artificial intelligence, raising the problem of supporting these worldwide interactions. These large scale mixed interactions create many problems that must be addressed with multidisciplinary approaches [74]. One particular problem is to reconcile formal semantics of computer science (e.g. logics, ontologies, typing systems, protocols, etc.) on which the Web architecture is built, with soft semantics of people (e.g. posts, tags, status, relationships, etc.) on which the Web content is built.

Wimmics proposes models and methods to bridge formal semantics and social semantics on the Web [73] in order to address some of the challenges in building a Web as a universal space linking many different kinds of intelligence.

From a formal modeling point of view, one of the consequences of the evolutions of the Web is that the initial graph of linked pages has been joined by a growing number of other graphs. This initial graph is now mixed with sociograms capturing the social network structure, workflows specifying the decision paths to be followed, browsing logs capturing the trails of our navigation, service compositions specifying distributed processing, open data linking distant datasets, etc. Moreover, these graphs are not available in a single central repository but distributed over many different sources. Some sub-graphs are small and local (e.g. a user's profile on a device), some are huge and hosted on clusters (e.g. Wikipedia), some are largely stable (e.g. thesaurus of Latin), some change several times per second (e.g. social network statuses), etc. And each type of network of the Web is not an isolated island. Networks interact with each other: the networks of communities influence the message flows, their subjects and types, the semantic links between terms interact with the links between sites and vice-versa, etc.

Not only do we need means to represent and analyze each kind of graphs, we also do need the means to combine them and to perform multi-criteria analysis on their combination. Wimmics contributes to this understanding by: (1) proposing multidisciplinary approaches to analyze and model the many aspects of these intertwined information systems, their communities of users and their interactions; (2) formalizing and reasoning on these models using graphs-based knowledge representation from the semantic Web to propose new analysis tools and indicators, and to support new functionalities and better management. In a nutshell, the first research direction looks at models of systems, users, communities and interactions while the second research direction considers formalisms and algorithms to represent them and reason on their representations.