EN FR
EN FR


Section: New Results

Modeling and Simulation of Parallel Applications and Distributed Infrastructures

Participants : Eddy Caron, Zeina Houmani, Frédéric Suter.

Bridging Concepts and Practice in eScience via Simulation-driven Engineering

The CyberInfrastructure (CI) has been the object of intensive research and development in the last decade, resulting in a rich set of abstractions and interoperable software implementations that are used in production today for supporting ongoing and breakthrough scientific discoveries. A key challenge is the development of tools and application execution frameworks that are robust in current and emerging CI configurations, and that can anticipate the needs of upcoming CI applications. In [14] we presented WRENCH, a framework that enables simulation-driven engineering for evaluating and developing CI application execution frameworks. WRENCH provides a set of high-level simulation abstractions that serve as building blocks for developing custom simulators. These abstractions rely on the scalable and accurate simulation models that are provided by the SimGrid simulation framework. Consequently, WRENCH makes it possible to build, with minimum software development effort, simulators that can accurately and scalably simulate a wide spectrum of large and complex CI scenarios. These simulators can then be used to evaluate and/or compare alternate platform, system, and algorithm designs, so as to drive the development of CI solutions for current and emerging applications.

Accurately Simulating Energy Consumption of I/O-intensive Scientific Workflows

While distributed computing infrastructures can provide infrastructure-level techniques for managing energy consumption, application-level energy consumption models have also been developed to support energy-efficient scheduling and resource provisioning algorithms. In [7], we analyze the accuracy of a widely-used application-level model that have been developed and used in the context of scientific workflow executions. To this end, we profile two production scientific workflows on a distributed platform instrumented with power meters. We then conduct an analysis of power and energy consumption measurements. This analysis shows that power consumption is not linearly related to CPU utilization and that I/O operations significantly impact power, and thus energy consumption. We then propose a power consumption model that accounts for I/O operations, including the impact of waiting for these operations to complete, and for concurrent task executions on multi-socket, multi-core compute nodes. We implement our proposed model as part of a simulator that allows us to draw direct comparisons between real-world and modeled power and energy consumption. We find that our model has high accuracy when compared to real-world executions. Furthermore, our model improves accuracy by about two orders of magnitude when compared to the traditional models used in the energy-efficient workflow scheduling literature.