Section: Research Program
Algorithmic aspects of topological and geometric data analysis
tda requires to construct and manipulate appropriate representations of complex and high dimensional shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high dimensions. We focus our research on simplicial complexes which offer a convenient representation of general shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with good approximation properties and the design of compact data structures to represent them.
In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approximations very efficiently and under reasonable sampling conditions. Extending those techniques to higher dimensions as is required in the context of tda is problematic since almost all methods in low dimensions rely on the computation of a subdivision of the ambient space. A direct extension of those methods would immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop algorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder approximations that only captures the homotopy type or the homology of the sampled shape. The recent theory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a stable way.