EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 4C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 5M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 6H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 7H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 8H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 9L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 10S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, in: Multiscale Model. Simul., 2018, vol. 16, no 4, pp. 1648–1683.
  • 11S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 12L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 13L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 14L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 15F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 16N. Schmitt.

    Discontinuous Galerkin time domain method for nanophotonics, Inria Nachos project-team, 2018.
  • 17J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

    http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

  • 18E. Agullo, L. Giraud, A. Gobé, M. Kuhn, S. Lanteri, L. Moya.

    High order HDG method and domain decomposition solvers for frequency‐domain electromagnetics, in: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, October 2019. [ DOI : 10.1002/jnm.2678 ]

    https://hal.inria.fr/hal-02327982
  • 19V. Belus, J. Rabault, J. Viquerat, Z. Che, E. Hachem, U. Reglade.

    Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film, in: AIP Advances, December 2019, vol. 9, no 12, 125014 p. [ DOI : 10.1063/1.5132378 ]

    https://hal.archives-ouvertes.fr/hal-02428691
  • 20C. Besse, S. Descombes, G. Dujardin, I. Lacroix-Violet.

    Energy preserving methods for nonlinear schrodinger equations, in: IMA Journal of Numerical Analysis, 2019, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01951527
  • 21T. Chaumont-Frelet.

    Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, in: Calcolo, 2019, forthcoming. [ DOI : 10.1007/s10092-019-0346-z ]

    https://hal.inria.fr/hal-02197891
  • 22M. M. R. Elsawy, S. Lanteri, R. Duvigneau, G. Brière, M. S. Mohamed, P. Genevet.

    Global optimization of metasurface designs using statistical learning methods, in: Scientific Reports, November 2019, vol. 9, no 1. [ DOI : 10.1038/s41598-019-53878-9 ]

    https://hal.archives-ouvertes.fr/hal-02156881
  • 23K. Li, T.-Z. Huang, L. Li, S. Lanteri.

    A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics, in: Applied Mathematics and Computation, October 2019, vol. 358, pp. 128-145. [ DOI : 10.1016/j.amc.2019.04.031 ]

    https://hal.inria.fr/hal-02433050
  • 24K. Li, T.-Z. Huang, L. Li, S. Lanteri.

    POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations, in: Journal of Computational Physics, November 2019, vol. 396, pp. 106-128. [ DOI : 10.1016/j.jcp.2019.05.051 ]

    https://hal.inria.fr/hal-02433048
  • 25N. Schmitt, N. Georg, G. Brière, D. Loukrezis, S. Héron, S. Lanteri, C. Klitis, M. Sorel, U. Römer, H. De Gersem, S. Vézian, P. Genevet.

    Optimization and uncertainty quantification of gradient index metasurfaces, in: Optical Materials Express, 2019, vol. 9, no 2, 892 p. [ DOI : 10.1364/OME.9.000892 ]

    https://hal.inria.fr/hal-02433053
  • 26J. Viquerat, N. Schmitt, C. Scheid.

    Simulating 3D periodic structures at oblique incidences with discontinuous Galerkin time-domain methods: theoretical and practical considerations, in: SMAI Journal of Computational Mathematics, September 2019. [ DOI : 10.5802/smai-jcm.45 ]

    https://hal.archives-ouvertes.fr/hal-01978598
  • 27J. Viquerat.

    Efficient time‐domain numerical analysis of waveguides with tailored wideband pulses, in: Microwave and Optical Technology Letters, March 2019, vol. 61, no 6, pp. 1534-1539. [ DOI : 10.1002/mop.31840 ]

    https://hal.inria.fr/hal-02433052

International Conferences with Proceedings

  • 28E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.

    Energy Analysis of a Solver Stack for Frequency-Domain Electromagnetics, in: PDP 2019 - 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Pavia, Italy, 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE, February 2019, pp. 385-391. [ DOI : 10.1109/EMPDP.2019.8671555 ]

    https://hal.archives-ouvertes.fr/hal-02191331
  • 29T. Chaumont-Frelet, A. Ern, M. Vohralík.

    Asymptotically constant-free, p-robust and guaranteed a posteriori error estimates for the Helmholtz equation, in: EnuMath 2019 - European Numerical Mathematics and Advanced Applications Conference, Egmond aan Zee, Netherlands, September 2019.

    https://hal.inria.fr/hal-02321140

Conferences without Proceedings

  • 30T. Chaumont-Frelet, S. Nicaise.

    Finite element discretizations of high-frequency wave propagation problems in heterogeneous media, in: Waves 2019 - 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Vienna, France, August 2019.

    https://hal.inria.fr/hal-02321137
  • 31T. Chaumont-Frelet, S. Nicaise.

    Frequency-explicit convergence analysis for finite element discretizations of wave propagation problems in heterogeneous media, in: MAFELAP 2019 - 16th Conference on Mathematics of Finite Elements and Applications, London, Royaume-Uni, June 2019.

    https://hal.inria.fr/hal-02321130
  • 32T. Chaumont-Frelet, S. Nicaise.

    High order finite element methods for wave propagation in heterogenous media, in: JOSO 2019 - Journées Ondes Sud-Ouest, Le Barp, France, March 2019.

    https://hal.inria.fr/hal-02138517
  • 33T. Chaumont-Frelet, S. Nicaise.

    Sharp stability analysis for high-order finite element discretizations of general wave propagation problems, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.

    https://hal.inria.fr/hal-02321133
  • 34T. Chaumont-Frelet, S. Nicaise, D. Pardo.

    Finite element approximation of Maxwell's equations with unfitted meshes for borehole simulations, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.

    https://hal.inria.fr/hal-02321135
  • 35M. M. R. Elsawy, R. Duvigneau, S. Lanteri, P. Ni, G. Brière, P. Genevet.

    Optimal design of all-dielectric 3D gradient metasurfaces, in: PIERS 2019 - PhotonIcs & Electromagnetics Research Symposium, Rome, Italy, June 2019.

    https://www.hal.inserm.fr/inserm-02430383
  • 36M. M. R. Elsawy, K. Hassan, S. Boutami, S. Lanteri.

    Statistical learning optimization for highly efficient graded index photonic lens, in: Workshop on Theoretical and Numerical Tools for Nanophotonics TNTN 2020, Berlin, Germany, February 2020.

    https://www.hal.inserm.fr/inserm-02430410
  • 37M. M. R. Elsawy, S. Lanteri, R. Duvigneau, G. Brière, P. Genevet.

    Optimized 3D metasurface for maximum light deflection at visible range, in: META 2019 - 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Lisbonne, Portugal, July 2019.

    https://www.hal.inserm.fr/inserm-02430395

Scientific Books (or Scientific Book chapters)

  • 38An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, January 2020, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01955032

Other Publications

References in notes
  • 47B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 48B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 49C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 50K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 51K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 52B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 53A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 54J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 55J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 56X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 57J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 58A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 59J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 60K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan.

    Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, in: Nano. Lett., 2012, vol. 12, pp. 1616-1619. [ DOI : 10.1021/nl204550q ]
  • 61K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 62Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.