Section: Dissemination
Teaching - Supervision - Juries
Teaching
-
Master : E. Chouzenoux. Foundations of Distributed and Large Scale Computing, 26h, M.Sc. in Data Sciences and Business Analytics, 3rd year CentraleSupélec, MVA ENS Cachan, Master Optimization Paris Sud and ESSEC Business School, FR
-
Master: E. Chouzenoux. Advanced Machine Learning, 18h, 3rd year CentraleSupélec, FR
-
Master: F. Malliaros. Machine Learning, 27h, M.Sc. in Data Sciences and Business Analytics, CentraleSupélec and ESSEC Business School and M.Sc. in Artificial Intelligence, CentraleSupélec, FR.
-
Master: F. Malliaros. Introduction to Machine Learning, 33h, 2nd year course at CentraleSupélec, FR.
-
Master: F. Malliaros. Mathematical Modeling of Propagation Phenomena – Propagation on Graphs, 15h, 1st year course at CentraleSupélec, FR.
-
Master: Oyallon, Edouard. Deep Learning, 24h, 3rd year CentraleSupélec, FR
-
Master: Oyallon, Edouard. Reinforcement Learning, 24h, 3rd year CentraleSupélec, FR
-
Master : J.C. Pesquet. Advanced course on Optimization, 33h, M1, CentraleSupélec, FR
-
Master: J.C. Pesquet. Introduction to Optimization, 6h, MVA ENS Cachan, FR
-
Master: Talbot, Hugues. Discrete Optimisation, 2nd year course, CentraleSupelec, 30h, EN
-
Master: Talbot, Hugues. Big Data, Techniques and Platforms, M.Sc in Data Science and Business Analytics, CentraleSupelec and ESSEC Business School, 30h, EN
-
Master: Talbot, Hugues. Optimisation for AI, M.Sc in AI, CentraleSupelec and ESSEC Business School, 30h, EN
-
Master: M. Vakalopoulou. Introduction to Visual Computing, 25h, 3rd year CentraleSupélec, FR
-
Master: M. Vakalopoulou. Deep Learning, 25h, 3rd year CentraleSupélec, FR
-
Master: M. Vakalopoulou. Introduction to Machine Learning, 33h, 2nd year CentraleSupélec, FR
Lecturing activities
-
F. Malliaros. Summer School Artificial Intelligence, July 1-12, 2019, CentraleSupélec.
-
J.C. Pesquet. Erwin Schrödinger Institute for Mathematics and Physics in Vienna, 4-6 March 2019, Austria.
-
M. Vakalopoulou. Summer School on Artificial Intelligence, July 1-12n 2019, CentraleSupélec.
-
E. Chouzenoux. Summer School Sparsity for Physics, Signal and Learning, June 24-27, 2019, Inria Paris.
Supervision
-
PhD (defended) : Huu Dien Khue Le, Algorithme des directions alternées non convexe pour graphes: inférence et apprentissage, 2016-2019, supervised by N. Paragios.
-
PhD (defended) : Riza Alp Guler, Apprentissage de Correspondances Image-Surface, 2016-2019, supervised by I. Kokkinos and N. Paragios.
-
PhD (defended) : Marie-Caroline Corbineau, Fast online optimization algorithms for machine learning and medical imaging, 2016-2019, supervised by E. Chouzenoux and J.-C. Pesquet.
-
PhD (defended) : Loubna El Gueddari, Parallel proximal algorithms for compressed sensing MRI reconstruction - Applications to ultra-high magnetic field imaging, 2016-2019, supervised by J.-C. Pesquet and Ph. Ciuciu (Inria PARIETAL).
-
PhD (in progress) : Abdulkadir Çelikkanat, Representation learning methods on graphs, 2017-2020, supervised by F. Malliaros and N. Paragios.
-
PhD (in progress): Yunshi Huang, Majorization-Minimization approaches for large scale problems in image processing, 2018-2021, supervised by E. Chouzenoux and V. Elvira (Univ. Edinburgh).
-
PhD (in progress) : Samy Ammari, Imagerie médicale computationnelle en neuro oncologie, 2019-2022, supervised by C. Balleyguier (Institut Gustave Roussy) and E. Chouzenoux.
-
PhD (in progress) : Georgios Panagopoulos, Influence maximization in social networks, 2018-2021, supervised by F. Malliaros and M. Vazirgiannis (École Polytechnique).
-
PhD (in progress): Surabhi Jagtap, Graph-based learning from multi-omics data, 2019-2022, supervised by F. Malliaros, J.-C. Pesquet, and L. Duval (IFP Energies Nouvelles).
-
PhD (in progress): Kavya Gupta, Neural network solutions for safety of complex systems, 2019-2022, supervised by F. Malliaros, J.-C. Pesquet and F. Kaakai (Thales Group).
-
PhD (in progress): Maria Papadomanolaki, Change Detection from Multitemporal High Resolution Data with Deep Learning, 2017-2021, supervised by M. Vakalopoulou and with K. Karantzalos.
-
PhD (in progress): Mihir Sahasrabudhe, Unsupervised ans Weakly Supervised Deep Learning Methods for Computer Vision and Medical Imaging, 2016-2020, supervised by N. Paragios.
-
PhD (in progress): Théo Estienne, Improving anticancer therapies efficacy through Machine Learning on Medical Imaging & Genomic Data, 2017-2020, supervised by M. Vakalopoulou and N. Paragios.
-
PhD (in progress): Enzo Battistella, Development of novel imaging approaches for tumour phenotype assessment by noninvasive imaging 2017-2020, supervised by M. Vakalopoulou and N. Paragios.
-
PhD (in progress): Roger Sun, Deep learning and computer vision approaches on medical imaging and genomic data to improve the prediction of anticancer therapies' efficacy, 2017-2020, supervised by M. Vakalopoulou and N. Paragios.
-
PhD (in progress): Ana Neacsu, Méthodes d'apprentissage profond inspirées d'algorithmes de traitement du signal, 2019-2022, supervised by J.-C. Pesquet and C. Burileanu (Politehnica Bucarest).
-
PhD (in progress): Sagar Verma, Modélisation, contrôle et supervision de moteurs électriques par réseaux de neurones profonds, 2019-2022, supervised by M. Castella and J.-C. Pesquet.
-
PhD (in progress): Maïssa Sghaier, clinical Task-Based Reconstruction in tomosynthesis, 2017-2020, supervised by J.-C. Pesquet and S. Muller (GE Healthcare).
-
PhD (in progress): Marion Savanier, Reconstruction 3D interventionnelle, 2019-2022, supervised by E. Chouzenoux and C. Riddell (GE Healthcare).
-
PhD (in progress): Arthur Marmin, Rational models optimized exactly for chemical processes improvement, 2017-2020, supervised by M. Castella (Telecom Paristech) and J.-C. Pesquet.
-
PhD (in progress): Sylvain Lempereur. Analyse quantitative de la morphologie de poissons aux stades larvaire et juvénile. 2017-2020. Supervised by Hugues Talbot and Jean-Stéphane Joly (CNRS).
-
PhD (in progress): Daniel Antunes: Contraintes géométriques et approches variationnelles pour l'analyse d'image. 2016-2019. Supervised by Hugues Talbot and Jacques-Olivier Lachaud (U. Savoie-Mont Blanc)
-
PhD (in progress): Marie-Charlotte Poilpre: Méthode de comparaison faciale morphologique, adaptée aux expertise judiciaires, basée sur la modélisation 3D. 2017-2020. Supervised by Hugues Talbot and Vincent Nozick (U. Paris-Est)
-
PhD (in progress): Thank Xuan Nguyen. Détection et étude morphologique des sources extra-galactiques par analyse variationnelle. 2018-2021. Supervised by Hugues Talbot and Laurent Najman (ESIEE)
-
PhD (in progress): Marvin Lerousseau. Apprentissage statistique en imagerie médicale et en génomique pour prédire l'efficacité des thérapies anti-tumorales. 2018-2021. Supervised by Nikos Paragios (Therapanacea), Eric Deutch (IGR) and Hugues Talbot.
-
PhD (in progress): Mario Viti. Low-dose assessment of coronal vessel health on CT. 2019-2022. Supervised by Hugues Talbot.
Juries
The faculty members of the team participated to numerous PhD Thesis Committees, HDR Committees and served as Grant Reviewers. Moreover, they serve regularly as a jury Member to Final Engineering Internship and the Research Innovation Project for students of CentraleSupélec, FR.