EN FR
Homepage Inria website
OPIS - 2019

Overall Objectives
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 3Ö. D. Akyildiz, E. Chouzenoux, V. Elvira, J. Míguez.

    A probabilistic incremental proximal gradient method, in: IEEE Signal Processing Letters, July 2019, vol. 26, no 8, pp. 1257-1261, https://arxiv.org/abs/1812.01655 - 5 pages. [ DOI : 10.1109/LSP.2019.2926926 ]

    https://hal.archives-ouvertes.fr/hal-01946642
  • 4A. Benfenati, E. Chouzenoux, J.-C. Pesquet.

    Proximal approaches for matrix optimization problems: Application to robust precision matrix estimation, in: Signal Processing, April 2020, vol. 169. [ DOI : 10.1016/j.sigpro.2019.107417 ]

    https://hal.archives-ouvertes.fr/hal-02422403
  • 5C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, M. Prato.

    Deep Unfolding of a Proximal Interior Point Method for Image Restoration, in: Inverse Problems, 2019, https://arxiv.org/abs/1812.04276, forthcoming. [ DOI : 10.1088/1361-6420/ab460a ]

    https://hal.archives-ouvertes.fr/hal-01943475
  • 6L. Briceño-Arias, G. Chierchia, E. Chouzenoux, J.-C. Pesquet.

    A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression, in: Computational Optimization and Applications, April 2019, vol. 72, no 3, pp. 707-726, https://arxiv.org/abs/1712.09131. [ DOI : 10.1007/s10589-019-00060-6 ]

    https://hal.archives-ouvertes.fr/hal-01672507
  • 7M. Castella, J.-C. Pesquet, A. Marmin.

    Rational optimization for nonlinear reconstruction with approximate ℓ0 penalization, in: IEEE Transactions on Signal Processing, March 2019, vol. 67, no 6, pp. 1407-1417. [ DOI : 10.1109/TSP.2018.2890065 ]

    https://hal.archives-ouvertes.fr/hal-01852289
  • 8G. Chassagnon, C. Martin, R. Marini, M. Vakalopoulou, A. Régent, L. Mouthon, N. Paragios, M.-P. Revel.

    Use of Elastic Registration in Pulmonary MRI for the Assessment of Pulmonary Fibrosis in Patients with Systemic Sclerosis, in: Radiology, May 2019, vol. 291, no 2, pp. 487-492. [ DOI : 10.1148/radiol.2019182099 ]

    https://hal.inria.fr/hal-02422529
  • 9G. Chassagnon, M. Vakalopoulou, N. Paragios, M.-P. Revel.

    Artificial intelligence applications for thoracic imaging, in: European Journal of Radiology, February 2020, vol. 123, 108774 p. [ DOI : 10.1016/j.ejrad.2019.108774 ]

    https://hal.inria.fr/hal-02422501
  • 10E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet.

    A Proximal Interior Point Algorithm with Applications to Image Processing, in: Journal of Mathematical Imaging and Vision, 2019, forthcoming.

    https://hal.archives-ouvertes.fr/hal-02120005
  • 11E. Chouzenoux, H. Gérard, J.-C. Pesquet.

    General risk measures for robust machine learning, in: Foundations of Data Science, September 2019, vol. 1, no 3, pp. 249-269, https://arxiv.org/abs/1904.11707.

    https://hal.archives-ouvertes.fr/hal-02109418
  • 12E. Chouzenoux, T. Tsz-Kit Lau, C. Lefort, J.-C. Pesquet.

    Optimal Multivariate Gaussian Fitting with Applications to PSF Modeling in Two-Photon Microscopy Imaging, in: Journal of Mathematical Imaging and Vision, September 2019, vol. 61, no 7, pp. 1037-1050. [ DOI : 10.1007/s10851-019-00884-1 ]

    https://hal.archives-ouvertes.fr/hal-01985663
  • 13P. L. Combettes, J.-C. Pesquet.

    Deep Neural Network Structures Solving Variational Inequalities *, in: Set-Valued and Variational Analysis, 2019, forthcoming.

    https://hal.archives-ouvertes.fr/hal-02425025
  • 14P. L. Combettes, J.-C. Pesquet.

    Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations With Random Sweeping II: Mean-Square and Linear Convergence, in: Mathematical Programming B, March 2019, vol. 174, no 1-2, pp. 433–451.

    https://hal.archives-ouvertes.fr/hal-01964582
  • 15M.-C. Corbineau, D. Kouamé, E. Chouzenoux, J.-Y. Tourneret, J.-C. Pesquet.

    Preconditioned P-ULA for Joint Deconvolution-Segmentation of Ultrasound Images - Extended Version, in: IEEE Signal Processing Letters, August 2019, vol. 26, no 10, pp. 1456–1460.

    https://hal.archives-ouvertes.fr/hal-02073283
  • 16D. Genest, É. Puybareau, M. Léonard, J. Cousty, N. de Crozé, H. Talbot.

    High throughput automated detection of axial malformations in Medaka fish embryo, in: Computers in Biology and Medicine, February 2019, vol. 105, pp. 157-168. [ DOI : 10.1016/j.compbiomed.2018.12.016 ]

    https://hal.archives-ouvertes.fr/hal-01959606
  • 17E. Grossiord, B. Naegel, H. Talbot, L. Najman, N. Passat.

    Shape-based analysis on component-graphs for multivalued image processing, in: Mathematical Morphology - Theory and Applications, 2019, vol. 3, no 1, pp. 45-70. [ DOI : 10.1515/mathm-2019-0003 ]

    https://hal.univ-reims.fr/hal-01695384
  • 18E. Grossiord, N. Passat, H. Talbot, B. Naegel, S. Kanoun, I. Tal, P. Tervé, S. Ken, O. Casasnovas, M. Meignan, L. Najman.

    Shaping for PET image analysis, in: Pattern Recognition Letters, 2020, forthcoming.

    https://hal.archives-ouvertes.fr/hal-02155801
  • 19C. Jaquet, L. Najman, H. Talbot, L. Grady, M. Schaap, B. Spain, H. J. Kim, I. Vignon-Clementel, C. A. Taylor.

    Generation of patient-specific cardiac vascular networks: a hybrid image-based and synthetic geometric model, in: IEEE Transactions on Biomedical Engineering, April 2019, vol. 66, no 4, pp. 946-955. [ DOI : 10.1109/TBME.2018.2865667 ]

    https://hal.archives-ouvertes.fr/hal-01869264
  • 20F. Malliaros, C. Giatsidis, A. N. Papadopoulos, M. Vazirgiannis.

    The Core Decomposition of Networks: Theory, Algorithms and Applications, in: The VLDB Journal, 2019.

    https://hal-centralesupelec.archives-ouvertes.fr/hal-01986309
  • 21A. Mekki, L. Dercle, P. Lichtenstein, G. Nasser, A. Marabelle, S. Champiat, E. Chouzenoux, C. Balleyguier, S. Ammari.

    Machine learning defined diagnostic criteria for differentiating pituitary metastasis from autoimmune hypophysitis in patients undergoing immune checkpoint blockade therapy, in: European Journal of Cancer, September 2019, vol. 119, pp. 44-56. [ DOI : 10.1016/j.ejca.2019.06.020 ]

    https://hal.archives-ouvertes.fr/hal-02269518
  • 22O. Merveille, B. Naegel, H. Talbot, N. Passat.

    nD variational restoration of curvilinear structures with prior-based directional regularization, in: IEEE Transactions on Image Processing, 2019, vol. 28, no 8, pp. 3848-3859. [ DOI : 10.1109/TIP.2019.2901706 ]

    https://hal.archives-ouvertes.fr/hal-01832636
  • 23A. Mongia, N. Jhamb, E. Chouzenoux, A. Majumdar.

    Deep latent factor model for collaborative filtering, in: Signal Processing, 2020, vol. 169, 107366 p. [ DOI : 10.1016/j.sigpro.2019.107366 ]

    https://hal.archives-ouvertes.fr/hal-02373934
  • 24M. Papadomanolaki, M. Vakalopoulou, K. Karantzalos.

    A Novel Object-Based Deep Learning Framework for Semantic Segmentation of Very High-Resolution Remote Sensing Data: Comparison with Convolutional and Fully Convolutional Networks, in: Remote Sensing, March 2019, vol. 11, no 6, 684 p. [ DOI : 10.3390/rs11060684 ]

    https://hal.inria.fr/hal-02078539
  • 25J. Robic, B. Perret, A. Nkengne, M. Couprie, H. Talbot.

    Three-dimensional conditional random field for the dermal–epidermal junction segmentation, in: Journal of Medical Imaging, April 2019, vol. 6, no 02, 1 p. [ DOI : 10.1117/1.JMI.6.2.024003 ]

    https://hal.archives-ouvertes.fr/hal-02155490
  • 26M. Vakalopoulou, G. Chassagnon, N. Paragios, M.-P. Revel.

    Deep learning: definition and perspectives for thoracic imaging, in: European Radiology, December 2019. [ DOI : 10.1007/s00330-019-06564-3 ]

    https://hal.inria.fr/hal-02422513

Invited Conferences

  • 27E. Chouzenoux, V. Elvira.

    Adaptive importance sampling with scaled Langevin proposal adaptatioń, in: 17th International Conference on Computer Aided Systems Theory (EUROCAST 2019), Las Palmas de Gran Canaria, Spain, February 2019.

    https://hal.archives-ouvertes.fr/hal-02314409
  • 28A. Marmin, M. Castella, J.-C. Pesquet.

    Detecting the rank of a symmetric tensor, in: EUSIPCO 2019 : 27th European Signal Processing Conference, La Corogne, Spain, 2019 27th European Signal Processing Conference (EUSIPCO), IEEE, 2019, pp. 1-5. [ DOI : 10.23919/EUSIPCO.2019.8902781 ]

    https://hal.archives-ouvertes.fr/hal-02284991
  • 29Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, J.-C. Pesquet.

    MM Adapted MH Methods, in: BASP 2019 - International Biomedical and Astronomical Signal Processing Frontiers workshop, Villars sur Ollon, Switzerland, February 2019.

    https://hal.archives-ouvertes.fr/hal-02314412
  • 30M. Terris, E. Chouzenoux.

    Stochastic MM Subspace Algorithms, in: BASP 2019 - International Biomedical and Astronomical Signal Processing Frontiers workshop, Villars sur Ollon, Switzerland, February 2019.

    https://hal.archives-ouvertes.fr/hal-02314411

International Conferences with Proceedings

  • 31D. Antunes, J.-O. Lachaud, H. Talbot.

    Digital Curvature Evolution Model for Image Segmentation, in: International Conference on Discrete Geometry for Computer Imagery, Noisy-le-Grand, France, Lecture Notes in Computer Science, Springer, February 2019, vol. 11414, pp. 15-26. [ DOI : 10.1007/978-3-030-14085-4_2 ]

    https://hal.archives-ouvertes.fr/hal-02426946
  • 32E. Battistella, M. Vakalopoulou, T. Estienne, M. Lerousseau, R. Sun, C. Robert, N. Paragios, E. Deutsch.

    Gene Expression High-Dimensional Clustering towards a Novel, Robust, Clinically Relevant and Highly Compact Cancer Signature, in: IWBBIO 2019 - 7th International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 2019.

    https://hal.archives-ouvertes.fr/hal-02076104
  • 33E. Belilovsky, M. Eickenberg, E. Oyallon.

    Greedy Layerwise Learning Can Scale to ImageNet, in: ICML 2019 - 36th International Conference on Machine Learning, Long Beach, CA, United States, June 2019, https://arxiv.org/abs/1812.11446.

    https://hal.inria.fr/hal-02119398
  • 34A. Benamira, B. Devillers, E. Lesot, A. K. Ray, M. Saadi, F. Malliaros.

    Semi-Supervised Learning and Graph Neural Networks for Fake News Detection, in: ASONAM 2019 - IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Canada, August 2019.

    https://hal.archives-ouvertes.fr/hal-02334445
  • 35A. Cherni, E. Chouzenoux, L. Duval, J.-C. Pesquet.

    A Novel Smoothed Norm Ratio for Sparse Signal Restoration Application to Mass Spectrometry, in: SPARS ( Signal Processing with Adaptive Sparse Structured Representations ), Toulouse, France, July 2019.

    https://hal.archives-ouvertes.fr/hal-02179379
  • 36M.-C. Corbineau, C. Bertocchi, E. Chouzenoux, M. Prato, J.-C. Pesquet.

    Learned Image Deblurring by Unfolding a Proximal Interior Point Algorithm, in: ICIP 2019 - 26th IEEE International Conference on Image Processing, Taipei, Taiwan, IEEE, September 2019. [ DOI : 10.1109/ICIP.2019.8803438 ]

    https://hal.archives-ouvertes.fr/hal-02303511
  • 37L. El Gueddari, P. Ciuciu, E. Chouzenoux, A. Vignaud, J.-C. Pesquet.

    Calibrationless oscar-based image reconstruction in compressed sensing parallel MRI, in: ISBI 2019 - IEEE International Symposium on Biomedical Imaging, Venise, Italy, April 2019.

    https://hal.inria.fr/hal-02101262
  • 38V. Elvira, E. Chouzenoux.

    Langevin-based Strategy for Efficient Proposal Adaptation in Population Monte Carlo, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019), Brighton, United Kingdom, May 2019. [ DOI : 10.1109/ICASSP.2019.8682284 ]

    https://hal.archives-ouvertes.fr/hal-02431677
  • 39D. Genest, M. Léonard, J. Cousty, N. de Crozé, H. Talbot.

    Atlas-based automated detection of swim bladder in Medaka embryo, in: International Symposium on Mathematical Morphology (ISMM), Saarbrücken, Germany, Lecture Notes in Computer Science, Springer, May 2019, vol. 11564, pp. 496-507, https://arxiv.org/abs/1902.06130. [ DOI : 10.1007/978-3-030-20867-7_38 ]

    https://hal.archives-ouvertes.fr/hal-02019658
  • 40L. E. Gueddari, E. Chouzenoux, A. Vignaud, J.-C. Pesquet, P. Ciuciu.

    Online MR image reconstruction for compressed sensing acquisition in T2* imaging, in: SPIE Conference - Wavelets and Sparsity XVIII, San Diego, United States, August 2019.

    https://hal.inria.fr/hal-02265538
  • 41Y. Huang, E. Chouzenoux, V. Elvira.

    Particle Filtering for Online Space-Varying Blur Identification, in: IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Le Gosier, France, Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, December 2019.

    https://hal.archives-ouvertes.fr/hal-02406970
  • 42A. Marmin, M. Castella, J.-C. Pesquet.

    Sparse signal reconstruction with a sign oracle, in: SPARS 2019 - Signal Processing with Adaptive Sparse Structured Representations - Workshop, Toulouse, France, July 2019.

    https://hal.archives-ouvertes.fr/hal-02196881
  • 43Y. Marnissi, D. Abboud, E. Chouzenoux, J.-C. Pesquet, M. El-Badaoui, A. Benazza-Benyahia.

    A Data Augmentation Approach for Sampling Gaussian Models in High Dimension, in: EUSIPCO 2019 - 27th European Signal Processing Conference, La Corogne, Spain, Proceedings of the 27th European Signal Processing Conference (EUSIPCO 2019), September 2019.

    https://hal.archives-ouvertes.fr/hal-02314418
  • 44A. Mongia, V. Jain, E. Chouzenoux, A. Majumdar.

    Deep Latent Factor Model for Predicting Drug Target Interactions, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, May 2019.

    https://hal.archives-ouvertes.fr/hal-02406989
  • 45M. Papadomanolaki, K. Karantzalos, M. Vakalopoulou.

    A multi-task deep learning framework coupling semantic segmentation and image reconstruction for very high resolution imagery, in: IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, July 2019.

    https://hal.inria.fr/hal-02266085
  • 46M. Papadomanolaki, S. Verma, M. Vakalopoulou, S. Gupta, K. Karantzalos.

    Detecting urban changes with recurrent neural networks from multitemporal Sentinel-2 data, in: IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, July 2019.

    https://hal.inria.fr/hal-02266094
  • 47É. Puybareau, E. Carlinet, A. Benfenati, H. Talbot.

    Spherical Fluorescent Particle Segmentation and Tracking in 3D Confocal Microscopy, in: International Symposium on Mathematical Morphology, ISMM 2019, Saarbrücken, Germany, Lecture Notes in Computer Science, Springer, May 2019, vol. 11564, pp. 520-531. [ DOI : 10.1007/978-3-030-20867-7_40 ]

    https://hal.archives-ouvertes.fr/hal-02426948
  • 48J. Robic, B. Perret, A. Nkengne, M. Couprie, H. Talbot.

    Self-dual pattern spectra for characterising the dermal-epidermal junction in 3D reflectance confocal microscopy imaging, in: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, Saarbrücken, Germany, Lecture Notes in Computer Science, Springer, May 2019, vol. 11564, pp. 508-519. [ DOI : 10.1007/978-3-030-20867-7_39 ]

    https://hal.archives-ouvertes.fr/hal-02169702
  • 49M. Sahasrabudhe, Z. Shu, E. Bartrum, R. A. Güler, D. Samaras, I. Kokkinos.

    Lifting AutoEncoders: Unsupervised Learning of a Fully-Disentangled 3D Morphable Model Using Deep Non-Rigid Structure From Motion, in: The IEEE International Conference on Computer Vision (ICCV) Workshops, Seoul, South Korea, The IEEE International Conference on Computer Vision (ICCV) Workshops, November 2019.

    https://hal.archives-ouvertes.fr/hal-02422596
  • 50M. Sghaier, E. Chouzenoux, G. Palma, J.-C. Pesquet, S. Muller.

    A New Approach for Microcalcification Enhancement in Digital Breast Tomosynthesis Reconstruction, in: ISBI 2019 - IEEE International Symposium on Biomedical Imaging, Venise, Italy, Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI 2019), April 2019. [ DOI : 10.1109/ISBI.2019.8759534 ]

    https://hal.archives-ouvertes.fr/hal-02314420
  • 51A. J.-P. Tixier, M. E. G. Rossi, F. Malliaros, J. Read, M. Vazirgiannis.

    Perturb and Combine to Identify Influential Spreaders in Real-World Networks, in: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Canada, August 2019.

    https://hal-centralesupelec.archives-ouvertes.fr/hal-01958973
  • 52M. Vakalopoulou, S. Christodoulidis, M. Sahasrabudhe, S. Mougiakakou, N. Paragios.

    Image Registration of Satellite Imagery with Deep Convolutional Neural Networks, in: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, France, IEEE, July 2019, pp. 4939-4942. [ DOI : 10.1109/IGARSS.2019.8898220 ]

    https://hal.inria.fr/hal-02422555
  • 53A. Çelikkanat, F. Malliaros.

    Kernel Node Embeddings, in: IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, Canada, November 2019.

    https://hal.archives-ouvertes.fr/hal-02423629
  • 54A. Çelikkanat, F. Malliaros.

    Learning Node Embeddings with Exponential Family Distributions, in: NeurIPS 2019 - 33th Annual Conference on Neural Information Processing Systems - Workshop on Graph Representation Learning, Vancouver, Canada, December 2019.

    https://hal.archives-ouvertes.fr/hal-02336000

Conferences without Proceedings

  • 55A. Cherni, E. Chouzenoux, L. Duval, J.-C. Pesquet.

    Forme lissée de rapports de normes lp/lq (SPOQ) pour la reconstruction des signaux avec pénalisation parcimonieuse, in: GRETSI 2019, Lille, France, August 2019.

    https://hal.archives-ouvertes.fr/hal-02179373
  • 56L. El Gueddari, P. Ciuciu, E. Chouzenoux, A. Vignaud, J.-C. Pesquet.

    Online compressed sensing MR image reconstruction for high resolution T2* imaging, in: ISMRM 27th Annual Meeting and Exhibition, Montréal, Canada, May 2019.

    https://hal.archives-ouvertes.fr/hal-02314904
  • 57L. El Gueddari, P. Ciuciu, E. Chouzenoux, A. Vignaud, J.-C. Pesquet.

    OSCAR-based reconstruction for compressed sensing and parallel MR imaging, in: ISMRM 27th Annual Meeting and Exhibition, Montréal, Canada, May 2019.

    https://hal.archives-ouvertes.fr/hal-02314911
  • 58T. Estienne, M. Vakalopoulou, S. Christodoulidis, E. Battistella, M. Lerousseau, A. Carre, G. Klausner, R. Sun, C. Robert, S. Mougiakakou, N. Paragios, E. Deutsch.

    U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets, in: MICCAI 2019: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, Shenzhen, China, MICCAI, October 2019, pp. 310-319. [ DOI : 10.1007/978-3-030-32248-9_35 ]

    https://hal.archives-ouvertes.fr/hal-02365899
  • 59C. Lefort, E. Chouzenoux, J.-C. Pesquet.

    PLUMEE 2019 : Reconstruction numérique d'image en microscopie multiphotonique, in: 6ème Colloque francophone PLUridisciplinaire sur les Matériaux, l'Environnement et l'Electronique (PLUMEE 2019), Limoges, France, April 2019.

    https://hal.archives-ouvertes.fr/hal-02426765
  • 60S. Verma, R. Verma, P. B. Sujit.

    MAPEL: Multi-Agent Pursuer-Evader Learning using Situation Report, in: 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, France, IEEE, July 2019, pp. 1-8. [ DOI : 10.1109/IJCNN.2019.8852457 ]

    https://hal.archives-ouvertes.fr/hal-02426661

Other Publications

  • 61A. Benfenati, F. Bonacci, T. Bourouina, H. Talbot.

    Efficient position estimation of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising, October 2019, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-02150316
  • 62L. El Gueddari, E. Chouzenoux, A. Vignaud, P. Ciuciu.

    Calibration-less parallel imaging compressed sensing reconstruction based on OSCAR regularization, September 2019, working paper or preprint.

    https://hal.inria.fr/hal-02292372
  • 63B. Kas, H. Talbot, R. Ferrara, C. Richard, B. Besse, L. Mezquita, N. Lassau, C. Caramella.

    Hyperprogressive disease during immunotherapy: an attempt to clarify different definitions, November 2019, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-02429762