EN FR
Homepage Inria website


Section: New Software and Platforms

Equations

Keywords: Coq - Dependent Pattern-Matching - Proof assistant - Functional programming

Scientific Description: Equations is a tool designed to help with the definition of programs in the setting of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax for defining programs by dependent pattern-matching and well-founded recursion and compiles them down to the core type theory of Coq, using the primitive eliminators for inductive types, accessibility and equality. In addition to the definitions of programs, it also automatically derives useful reasoning principles in the form of propositional equations describing the functions, and an elimination principle for calls to this function. It realizes this using a purely definitional translation of high-level definitions to core terms, without changing the core calculus in any way, or using axioms.

Functional Description: Equations is a function definition plugin for Coq (supporting Coq 8.8 to 8.10, with special support for the Coq-HoTT library), that allows the definition of functions by dependent pattern-matching and well-founded, mutual or nested structural recursion and compiles them into core terms. It automatically derives the clauses equations, the graph of the function and its associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent eliminations that is also usable as a separate tactic, providing an axiom-free variant of dependent destruction. The main features of Equations include:

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and where clauses. The use of the K axiom or a proof of K is configurable, and it is able to solve unification problems without resorting to the K rule if not necessary.

Support for well-founded and mutual recursion using measure/well-foundedness annotations, even on indexed inductive types, using an automatic derivation of the subterm relation for inductive families.

Support for mutual and nested structural recursion using with and where auxilliary definitions, allowing to factor multiple uses of the same nested fixpoint definition. It proves the expected elimination principles for mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only functional extensionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automation fails to prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can advantageously replace dependent destruction and sometimes inversion as well. The as clause of dependent elimination allows to specify exactly the patterns and naming of new variables needed for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its signature, no-confusion property, well-founded subterm relation and decidable equality proof, if applicable.

Release Functional Description: This version of Equations is based on an improved simplification engine for the dependent equalities appearing during dependent eliminations that is also usable as a separate dependent elimination tactic, providing an axiom-free variant of dependent destruction and a more powerful form of inversion. See http://mattam82.github.io/Coq-Equations/equations/2019/01/28/1.2beta.html and the following release notes for more information.

News Of The Year: Equations 1.2 was first released in may this year, after 3 years of development. It provides a refined simplification engine based on the work published at ICFP'19 (see the "Equations Reloaded" paper for details). The system has been improved to also work in the setting of Homotopy Type Theory and provides a more expressive source language and robust dependent elimination tactics.