Section: Research Program

Programming Support

We pursue two main research directions relative to new programming support: first, developing new programming models with appropriate support in existing languages (libraries, embedded DSLs, etc.) and, second, providing new means for deployment and reconfiguration in geo-distributed ICT environments, principally supporting the mapping of software onto the infrastructure. For both directions two levels of challenges are considered. On the one hand, the generic level refers to efforts on programming support that can be applied to any kind of distributed software, application or system. On this level, contributions could thus be applied to any of the three layers addressed by STACK (i.e., system, middleware or application). On the other hand, the corresponding generic programming means may not be appropriate in practice (e.g., requirements for more dedicated support, performance constraints, etc.), even if they may lead to interesting general properties. For this reason, a specific level is also considered. This level could be based on the generic one but addresses specific cases or domains.

Programming Models and Languages Extensions

The current landscape of programming support for cloud applications is fragmented. This fragmentation is based on apparently different needs for various kinds of applications, in particular, web-based, computation-based, focusing on the organization of the computation, and data-based applications, within the last case a quite strong dichotomy between applications considering data as sets or relations, close to traditional database applications and applications considering data as real-time streams. This has led to various programming models, in a loose sense, including for instance microservices, graph processing, dataflows, streams, etc. These programming models have mostly been offered to the application programmer in the guise of frameworks, each offering subtle variants of the programming models with various implementation decisions favoring particular application and infrastructure settings. Whereas most frameworks are dedicated to a given programming model, e.g., basic Pregel  [82], Hive  [97], Hadoop  [98], some of them are more general-purpose through the provision of several programming models, e.g., Flink  [46] and Spark  [79]. Finally, some dedicated language support has been considered for some models (e.g., the language SPL underlying IBM Streams  [74]) as well as core languages and calculi (e.g.,   [43], [92]).

This situation raises a number of challenges on its own, related to a better structuring of the landscape. It is necessary to better understand the various programming models and their possible relations, with the aim of facilitating, if not their complete integration, at least their composition, at the conceptual level but also with respect to their implementations, as specific languages and frameworks.

Switching to massively geo-distributed infrastructures adds to these challenges by leading to a new range of applications (e.g., smart-* applications) that, by nature, require mixing these various programming models, together with a much more dynamic management of their runtime.

In this context, STACK would like to explore two directions:

  • First, we propose to contribute to generic programming models and languages to address composability of different programming models  [55]. For example, providing a generic stream data processing model that can operate under both data stream  [46] and operation stream  [104] modes, thus streams can be processed in micro batches to favour high throughput or record by record to sustain low latency. Software engineering properties such as separation of concerns and composition should help address such challenges  [35], [93]. They should also facilitate the software deployment and reconfiguration challenges discussed below.

  • Second, we plan to revise relevant programming models, the associated specific languages, and their implementation according to the massive geo-distribution of the underlying infrastructure, the data sources, and application end-users. For example, although SPL is extensible and distributed, it has been designed to run on multi-cores and clusters  [74]. It does not provide the level of dynamicity required by geo-distributed applications (e.g., to handle topology changes, loss of connectivity at the edge, etc.). Moreover, as more network data transfers will happen within a massively geo-distributed infrastructure, correctness of data transfers should be guaranteed. This has potential impact from the programming models to their implementations.

Deployment and Reconfiguration Challenges

The second research direction deals with the complexity of deploying distributed software (whatever the layer, application, middleware or system) onto an underlying infrastructure. As both the deployed pieces of software and the infrastructures addressed by STACK are large, massively distributed, heterogeneous and highly dynamic, the deployment process cannot be handled manually by developers or administrators. Furthermore, and as already mentioned in Section 3.2, the initial deployment of some distributed software will evolve through time because of the dynamicity of both the deployed software and the underlying infrastructures. When considering reconfiguration, which encompasses deployment as a specific case, the problem becomes more difficult for two main reasons: (1) the current state of both the deployed software and the infrastructure has to be taken into account when deciding on a reconfiguration plan, (2) as the software is already running the reconfiguration should minimize disruption time, while avoiding inconsistencies  [80], [85]. Many deployment tools have been proposed both in academia and industry  [57]. For example, Ansible (https://www.ansible.com/), Chef (https://www.chef.io/chef/) and Puppet (https://puppet.com/) are very well-known generic tools to automate the deployment process through a set of batch instructions organized in groups (e.g., playbooks in Ansible). Some tools are specific to a given environment, like Kolla to deploy OpenStack, or the embedded deployment manager within Spark. Few reconfiguration capabilities are available in production tools such as scaling and restart after a fault (https://kubernetes.io/) (https://jujucharms.com/). Academia has contributed to generic deployment and reconfiguration models. Most of these contributions are component-based. Component models divide a distributed software as a set of component instances (or modules) and their assembly, where components are connected through well defined interfaces  [93]. Thus, modeling the reconfiguration process consists in describing the life cycle of different components and their interactions. Most component-based approaches offer a fixed life cycle, i.e., identical for any component  [62]. Two main contributions are able to customize life cycles, Fractal  [45], [38] and its evolutions  [35], [36], [59], and Aeolus  [54]. In Fractal, the control part of a component (e.g., its life cycle) is modeled itself as a component assembly that is highly flexible. Aeolus, on the other hand, offers a finer control on both the evolution and the synchronization of the deployment process by modeling each component life cycle with a finite state machine.

A reconfiguration raises at least five questions, all of them are correlated: (1) why software has to be reconfigured? (monitoring, modeling and analysis) (2) what should be reconfigured? (software modeling and analysis), (3) how should it be reconfigured? (software modeling and planning decisions), (4) where should it be reconfigured? (infrastructure modeling and planning decisions), and (5) when to reconfigure it? (scheduling algorithms). STACK will contribute to all aspects of a reconfiguration process as described above. However, according to the expertise of STACK members, we will focus mainly on the three first questions: why, what and how, leaving questions where and when to collaborations with operational research and optimization teams.

First of all, we would like to investigate why software has to be reconfigured? Many reasons could be mentioned, such as hardware or software fault tolerance, mobile users, dynamicity of software services, etc. All those reasons are related somehow to the Quality of Service (QoS) or the Service Level Agreement (SLA) between the user and the Cloud provider. We first would like to explore the specificities of QoS and SLAs in the case of massively geo-distributed ICT environments  [89]. By being able to formalize this question, analyzing the requirement of a reconfiguration will be facilitated.

Second, we think that four important properties should be enhanced when deploying and reconfiguring models in massively geo-distributed ICT environments. First, as low-latency applications and systems will be subject to deployment and reconfiguration, the performance and the ability to scale are important. Second, as many different kinds of deployments and reconfigurations will concurrently hold within the infrastructure, processes have to be reliable, which is facilitated by a fine-grained control of the process. Finally, as many different software elements will be subject to deployment and reconfiguration, common generic models and engines for deployment and reconfiguration should be designed  [44]. For these reasons, we intend to go beyond Aeolus by: first, leveraging the expression of parallelism within the deployment process, which should lead to better performance; second, improving the separation of concerns between the component developer and the reconfiguration developer; third, enhancing the possibility to perform concurrent and decentralized reconfigurations.

Research challenges relative to programming support have been presented above. Many of these challenges are related, in different manners, to the resource management level of STACK or to crosscutting challenges, i.e., energy and security. First, one can notice that any programming model or deployment and reconfiguration implementation should be based on mechanisms related to resource management challenges. For this reason, all challenges addressed within this section are linked with lower level building blocks presented in Section 3.2. Second, as detailed above, deployment and reconfiguration address at least five questions. The question what? is naturally related to programming support. However, questions why, how?, where? and when? are also related to Section 3.2, for example, to monitoring and capacity planning. Moreover, regarding the deployment and reconfiguration challenges, one can note that the same goals recursively happen when deploying the control building blocks themselves (bootstrap issue). This comforts the need to design generic deployment and reconfiguration models and frameworks. These low-level models should then be used as back-ends to higher-level solutions. Finally, as energy and security are crosscutting themes within the STACK project, many additional energy and security considerations could be added to the above challenges. For example, our deployment and reconfiguration frameworks and solutions could be used to guarantee the deployment of end-to-end security policies or to answer specific energy constraints  [70] as detailed in the next section.