EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1S. Amari, F. Seyfert, M. Bekheit.

    Theory of Coupled Resonator Microwave Bandpass Filters of Arbitrary Bandwidth, in: Microwave Theory and Techniques, IEEE Transactions on, August 2010, vol. 58, no 8, p. 2188 -2203.
  • 2B. Atfeh, L. Baratchart, J. Leblond, J. R. Partington.

    Bounded extremal and Cauchy-Laplace problems on the sphere and shell, in: J. Fourier Anal. Appl., 2010, vol. 16, no 2, p. 177–203, Published online Nov. 2009.

    http://dx.doi.org/10.1007/s00041-009-9110-0
  • 3D. Avanessoff, J.-B. Pomet.

    Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states, in: ESAIM Control Optim. Calc. Var., 2007, vol. 13, no 2, p. 237-264.

    http://arxiv.org/abs/math/0505443
  • 4L. Baratchart, A. Ben Abda, F. Ben Hassen, J. Leblond.

    Recovery of pointwise sources or small inclusions in 2D domains and rational approximation, in: Inverse Problems, 2005, no 21, p. 51–74.
  • 5L. Baratchart, J. Grimm, J. Leblond, J. R. Partington.

    Approximation and interpolation in H 2 : Toeplitz operators, recovery problems and error bounds, in: Integral Equations and Operator Theory, 2003, vol. 45, p. 269–299.
  • 6L. Baratchart, R. Kuestner, V. Totik.

    Zero distributions via orthogonality, in: Annales de l'Institut Fourier, 2005, vol. 55, no 5, p. 1455-1499.
  • 7L. Baratchart, J. Leblond, J.-P. Marmorat.

    Sources identification in 3D balls using meromorphic approximation in 2D disks, in: Electronic Transactions on Numerical Analysis (ETNA), 2006, vol. 25, p. 41–53.
  • 8L. Baratchart, J. Leblond, S. Rigat, E. Russ.

    Hardy spaces of the conjugate Beltrami equation, in: Journal of Functional Analysis, 2010, vol. 259, no 2, p. 384-427.

    http://dx.doi.org/10.1016/j.jfa.2010.04.004, http://hal.inria.fr/hal-00401712
  • 9L. Baratchart, F. Mandréa, E. B. Saff, F. Wielonsky.

    2D inverse problems for the Laplacian: a meromorphic approximation approach, in: Journal de Math. Pures et Appliquées, 2008, vol. 86, p. 1-41.
  • 10L. Baratchart, M. Olivi.

    Critical points and error rank in best H 2 matrix rational approximation of fixed McMillan degree, in: Constructive Approximation, 1998, vol. 14, p. 273-300.
  • 11L. Baratchart, E. B. Saff, F. Wielonsky.

    A criterion for uniqueness of a critical point in H 2 rational approximation, in: Journal d'Analyse, 1996, vol. 70, p. 225-266.
  • 12L. Baratchart, F. Seyfert.

    An L p analog to AAK theory for p2, in: Journal of Functional Analysis, 2002, vol. 191, no 1, p. 52–122.
  • 13L. Baratchart, M. Yattselev.

    Convergent interpolation to Cauchy integrals over analytic arcs, in: Found. Comp. Math., 2009, no 6.
  • 14L. Baratchart, M. Yattselev.

    Convergent Interpolation to Cauchy Integrals over Analytic Arcs with Jacobi-Type Weights, in: International Mathematics Research Notices, 2010, Art. ID rnq 026, pp. 65 p.

    http://hal.inria.fr/hal-00508314
  • 15B. Hanzon, M. Olivi, R. Peeters.

    Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm, in: Linear Algebra and its Applications, 2006, vol. 418, p. 793-820.

    http://dx.doi.org/10.1016/j.laa.2006.09.029
  • 16J.-P. Marmorat, M. Olivi.

    Nudelman Interpolation, Parametrization of Lossless Functions and balanced realizations, in: Automatica, 2007, vol. 43, p. 1329–1338.

    http://dx.doi.org/10.1016/j.automatica.2007.01.020
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journal

  • 18L. Baratchart, S. Kupin, V. Lunot, M. Olivi.

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I, in: Journal d'Analyse, 2011, vol. 112, p. 207-255.

    http://arxiv.org/abs/0812.2050v3
  • 19L. Baratchart, H. Stahl, M. Yattselev.

    Weighted extremal domains and rational approximation, in: Advances in Maths, 2012, vol. 229, p. 357-407, available on line as from October 1st, 2011.

    http://dx.doi.org/10.1016/j.aim.2011.09.005
  • 20S. Chevillard, J. Harrison, M. Joldeş, C. Lauter.

    Efficient and accurate computation of upper bounds of approximation errors, in: Theoretical Computer Science, 2011, vol. 412, no 16, p. 1523–1543.

    http://dx.doi.org/10.1016/j.tcs.2010.11.052
  • 21Y. Fischer, J. Leblond, J. R. Partington, E. Sincich.

    Bounded extremal problems in Hardy spaces for the conjugate Beltrami equation in simply-connected domain, in: Applied and Computational Harmonic Analysis, 2011, vol. 31, no 2, p. 264-285.

    http://hal.inria.fr/inria-00460820
  • 22Y. Fischer, B. Marteau, Y. Privat.

    Some inverse problems around the tokamak Tore Supra, in: Communications on Pure and Applied Analysis, 2011, a paraître.

    http://hal.inria.fr/hal-00537648/en
  • 23A. Hindawi, L. Rifford, J.-B. Pomet.

    Mass transportation with LQ cost functions, in: Acta Applicandae Mathematicae, 2011, vol. 113, no 2, p. 215-229. [ DOI : 10.1007/s10440-010-9595-1 ]

    http://hal.inria.fr/hal-00534083/en

International Conferences with Proceedings

  • 24B. Bonnard, M. Chyba, S. J. Glaser, J. Marriott, D. Sugny.

    Nuclear Magnetic Resonance: the contrast imaging problem, in: 50th IEEE Conf. on Decision and Control, December 2011.
  • 25S. Chevillard.

    Automatic Generation of Code for the Evaluation of Constant Expressions at Any Precision with a Guaranteed Error Bound, in: 20th IEEE SYMPOSIUM on Computer Arithmetic, Los Alamitos, CA, E. Antelo, D. Hough, P. Ienne (editors), IEEE Computer Society, July 2011, p. 225–232.

    http://dx.doi.org/10.1109/ARITH.2011.38
  • 26M. Oldoni, F. Seyfert, G. Macchiarella, D. Pacaud.

    Deembedding of filters' responses from diplexer measurements, in: Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, June 2011, p. 1–4.

    http://dx.doi.org/10.1109/MWSYM.2011.5973385

Internal Reports

Other Publications

  • 31B. Bonnard, J.-B. Caillau, O. Cots.

    Geometric numerical methods in the control imaging problem in nuclear magnetic resonance, 2011, under preparation.
  • 32S. Chevillard, M. Joldeş, C. Lauter.

    User's Manual for the Sollya Tool, Release 3.0, 2011, Available on the web.

    http://sollya.gforge.inria.fr/
  • 33J. Nemcova, J.-B. Pomet.

    Average minimum time for coplanar-to-circular elliptic Keplerian orbit transfer, 2011, under preparation.
References in notes
  • 34A. Agrachev, P. Lee.

    Optimal transportation under nonholonomic constraints, in: Trans. Amer. Math. Soc., 2009, vol. 361, no 11, p. 6019–6047.

    http://dx.doi.org/10.1090/S0002-9947-09-04813-2
  • 35D. Alpay, L. Baratchart, A. Gombani.

    On the Differential Structure of Matrix-Valued Rational Inner Functions, in: Operator Theory : Advances and Applications, 1994, vol. 73, p. 30-66.
  • 36L. Ambrosio, S. Rigot.

    Optimal mass transportation in the Heisenberg group, in: J. Funct. Anal., 2004, vol. 208, no 2, p. 261–301.

    http://dx.doi.org/10.1016/S0022-1236(03)00019-3
  • 37Z. Artstein.

    Stabilization with relaxed control, in: Nonlinear Analysis TMA, 1983, vol. 7, p. 1163-1173.
  • 38D. Avanessoff, L. Baratchart, J.-B. Pomet.

    Sur l'intégrabilité (très) formelle d'une partie des équations de la platitude des systèmes de contrôle, INRIA, December 2003, no 5045.

    http://hal.inria.fr/inria-00071538
  • 39D. Avanessoff, M. Olivi, F. Seyfert.

    Polynomial structure of 3×3 reciprocal inner matrices, in: Proceedings of the MTNS, Budapest, Hungary, 2010.
  • 40L. Baratchart.

    On the H 2 Rational Approximation of Markov Matrix-Valued Functions, in: Proc. 17th Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japon, 2006, p. 180-182.
  • 41L. Baratchart, M. Cardelli, M. Olivi.

    Identification and rational L 2 approximation: a gradient algorithm, in: Automatica, 1991, vol. 27, p. 413-418.
  • 42L. Baratchart, M. Chyba, J.-B. Pomet.

    A Grobman-Hartman theorem for control systems, in: J. of Dynamics and Differential Equations, 2007, vol. 19, no 1, p. 75–107.

    http://dx.doi.org/10.1007/s10884-006-9014-5
  • 43L. Baratchart, Y. Fischer, J. Leblond.

    Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation, 2011, Submitted.

    http://arxiv.org/abs/1111.6776
  • 44L. Baratchart, L. Golinskii, S. Kupin.

    Multipoint Schur Algorithm II: generalized moment problems, Gaussian processes and prediction, Arxiv Maths 1007, 1363.
  • 45L. Baratchart, J. Leblond.

    Hardy approximation to L p functions on subsets of the circle with 1p<, in: Constructive Approximation, 1998, vol. 14, p. 41-56.
  • 46L. Baratchart, J. Leblond, F. Mandréa, E. B. Saff.

    How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian?, in: Inverse Problems, 1999, vol. 15, p. 79–90.
  • 47L. Baratchart, J. Leblond, J. R. Partington.

    Hardy approximation to L functions on subsets of the circle, in: Constructive Approximation, 1996, vol. 12, p. 423-435.
  • 48L. Baratchart, J. Leblond, F. Seyfert.

    Extremal problems of mixed type in H 2 of the circle, INRIA, 2009, no RR-7087.

    http://fr.arxiv.org/abs/0911.1441
  • 49L. Baratchart, M. Olivi.

    Index of critical points in l 2 -approximation, in: System and Control Letters, 1988, vol. 10, p. 167–174.
  • 50L. Baratchart, J.-B. Pomet.

    On local linearization of control systems, in: J. of Dynamical and Control Systems, 2009, vol. 15, no 4, p. 471-536. [ DOI : 10.1007/s10883-009-9077-9 ]

    http://hal.inria.fr/inria-00087024
  • 51L. Baratchart, H. Stahl, F. Wielonsky.

    Asymptotic uniqueness of best rational approximants of given degree to Markov functions in L 2 of the circle, in: Constr. Approx., 2001, vol. 17, no 1, p. 103–138.
  • 52S. Bila, D. Baillargeat, M. Aubourg, S. Verdeyme, P. Guillon, F. Seyfert, J. Grimm, L. Baratchart, C. Zanchi, J. Sombrin.

    Direct Electromagnetic Optimization of Microwave Filters, in: IEEE Microwave Magazine, 2001, vol. 1, p. 46-51.
  • 53J. Blum.

    Numerical simulation and optimal control in plasma physics, with applications to Tokamaks, Wiley/Gauthier-Villars, 1989.
  • 54A. Bombrun.

    Les Transferts Orbitaux à Faible Poussée : Optimalité et Feedback, École des Mines de Paris, March 2007.
  • 55B. Bonnard, L. Rifford, J.-B. Caillau.

    Convexity of injectivity domains on the ellipsoid of revolution: The oblate case, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 23-24, p. 1315–1318.

    http://dx.doi.org/10.1016/j.crma.2010.10.036
  • 56Y. Brenier.

    Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, p. 375–417.

    http://dx.doi.org/10.1002/cpa.3160440402
  • 57A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad.

    Orthogonal rational functions, Cambridge University Press, 1999.
  • 58A. Figalli, L. Rifford.

    Mass transportation on sub-Riemannian manifolds, in: Geom. Funct. Anal., 2010, vol. 20, no 1, p. 124–159.

    http://dx.doi.org/10.1007/s00039-010-0053-z
  • 59M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, no 6, p. 1327-1361.

    http://dx.doi.org/10.1080/00207179508921959
  • 60P. Fulcheri, M. Olivi.

    Matrix rational H 2 -approximation: a gradient algorithm based on Schur analysis, in: SIAM J. on Control & Optim., 1998, vol. 36, p. 2103-2127.
  • 61J. B. Garnett.

    Bounded analytic functions, Academic Press, 1981.
  • 62T. Georgiou.

    A topological approach to Nevanlinna-Pick interpolation, in: SIAM J. Math. Anal., 1987, p. 1248-1260.
  • 63A. A. Gonchar, E. A. Rakhmanov.

    Equilibrium distributions and degree of rational approximation of analytic functions, in: Math. USSR Sbornik, 1989, vol. 62, no 2.
  • 64U. Grenander, G. Szegö.

    Toeplitz forms, 2, Chelsea, 1984.
  • 65J. Grimm.

    Tralics, a LaTeX to XML translator, Part I, Inria, 2006, no 309-2.

    http://hal.inria.fr/inria-00000198
  • 66J. Grimm.

    Converting LaTeX to MathML: the Tralics algorithms, INRIA, 2007, no 6373.

    http://hal.inria.fr/inria-00192610/en/
  • 67J. Grimm.

    Producing MathML with Tralics, INRIA, 2007, no RR-6181.

    http://hal.inria.fr/inria-00144566/en/
  • 68J. Grimm.

    Tralics, a LaTeX to XML translator, Part II, INRIA, 2007, no RT-0310.

    http://hal.inria.fr/inria-00069870/en/
  • 69J. Grimm.

    Producing MathML with Tralics, in: DML2010, Towards a Digital Mathematics Library, Masaryk University Press, Brno, Czech Republic, July 2010.
  • 70T. Iwaniec, G. Martin.

    Geometric function theory and non-linear analysis, Oxford Univ. Press, 2001.
  • 71M. Jaoua, J. Leblond, M. Mahjoub, J. R. Partington.

    Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains, in: IMA J. of Applied Mathematics, 2009, vol. 74, p. 481-506.

    http://dx.doi.org/10.1093/imamat/hxn041
  • 72L. V. Kantorovich.

    On a problem of Monge, in: Uspekhi mat. Nauka, 1948, vol. 3, p. 225–226, reprinted in J. Math. Sci. (N. Y.) 133 (2006), 1383–1383.

    http://dx.doi.org/10.1007/s10958-006-0050-9
  • 73J. Leblond, C. Paduret, S. Rigat, M. Zghal.

    Sources localisation in ellipsoids by best meromorphic approximation in planar sections, in: Inverse Problems, 2008, vol. 24, no 3, (20p.) p.
  • 74G. Macchiarella, S. Tamiazzo.

    Novel Approach to the Synthesis of Microwave Diplexers, in: IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, p. 4281-4290.
  • 75R. J. McCann.

    Polar factorization of maps on Riemannian manifolds, in: Geom. Funct. Anal., 2001, vol. 11, no 3, p. 589–608.

    http://dx.doi.org/10.1007/PL00001679
  • 76G. Monge.

    Mémoire sur la théorie des délais et des ramblais, in: Histoire de l'Académie Royale des Sciences, 1781, p. 666-704.

    http://gallica.bnf.fr/ark:/12148/bpt6k35800.image.f796
  • 77J.-M. Morel, F. Santambrogio.

    Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, p. 427–432.

    http://dx.doi.org/10.1016/j.aml.2006.05.009
  • 78V. V. Peller.

    Hankel Operators and their Applications, Springer, 2003.
  • 79J.-B. Pomet.

    A necessary condition for dynamic equivalence, in: SIAM J. on Control and Optimization, 2009, vol. 48, p. 925-940.

    http://dx.doi.org/10.1137/080723351, http://hal.inria.fr/inria-00277531/en/
  • 80J.-B. Pomet.

    Equivalence et linéarisation des systèmes de contrôle, Université de Nice - Sophia Antipolis, October 2009, Habilitation à Diriger des Recherches (HDR).

    http://tel.archives-ouvertes.fr/tel-00429825/fr/
  • 81E. B. Saff, V. Totik.

    Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenshaften, Springer, 1997, vol. 316.
  • 82E. M. Stein.

    Harmonic Analysis, Princeton University Press, 1993.