EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1T. Abballe.

    Multi-scale numerical methods for diffusion in heterogeneous media, Ecole Polytechnique, Juin 2011.
  • 2A. Cossonnière.

    Transmission eigenvalues and their use in the identification of inclusions from electromagnetic measurements, INSA Toulouse, December 2011.
  • 3Z. Habibi.

    Homogenization for thermal transfers in nuclear reactor cores, Ecole Polytechnique, December 2011.
  • 4I. Pankratova.

    Homogenization of singular convection-diffusion equations and indefinite spectral problems, Ecole Polytechnique, January 2011.

Articles in International Peer-Reviewed Journal

  • 5G. Allaire, Y. Capdeboscq, M. Puel.

    Homogenization of a One-Dimensional Spectral Problem for a Singularly Perturbed Elliptic Operator with Neumann Boundary Conditions, in: DCDS-B, 2012, vol. 17, p. 1-31, at press.
  • 6G. Allaire, C. Dapogny, P. Frey.

    Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh, in: Comptes Rendus Mathematique, September 2011, vol. 349, no 17-18, p. 999–1003.

    http://www.sciencedirect.com/science/article/pii/S1631073X1100241X
  • 7G. Allaire, H. Hutridurga.

    Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, in: IMA J. Appl. Math., 2012, to appear.
  • 8G. Allaire, F. Jouve, N. Van Goethem.

    Damage and fracture evolution in brittle materials by shape optimization methods, in: Journal of Computational Physics, June 2011, vol. 230, no 12, p. 5010–5044.

    http://www.sciencedirect.com/science/article/pii/S0021999111001677
  • 9G. Allaire, A. Kelly.

    Optimal Design of Low-contrast Two-phase Structures For the Wave Equation, in: Mathematical Models & Methods In Applied Sciences, July 2011, vol. 21, no 7, p. 1499–1538.

    http://dx.doi.org/10.1142/S0218202511005477
  • 10G. Allaire, A. Mikelic, A. Piatnitski.

    Homogenization of the linearized ionic transport equations in rigid periodic porous media, in: Journal of Mathematical Physics, June 2011, vol. 52, no 6.

    http://dx.doi.org/10.1063/1.3596168
  • 11G. Allaire, I. Pankratova, A. Piatnitski.

    Homogenization and concentration for a diffusion equation with large convection in a bounded domain, in: Journal of Functional Analysis, 2012, vol. 262, p. 300-330, at press.
  • 12B. Aslanyurek, H. Haddar, H. Shahinturk.

    Generalized impedance boundary conditions for thin dielectric coatings with variable thickness, in: Wave Motion, November 2011, vol. 48, no 7, p. 681-700.

    http://dx.doi.org/10.1016/j.wavemoti.2011.06.002
  • 13L. Bourgeois, N. Chaulet, H. Haddar.

    Stable reconstruction of generalized impedance boundary conditions, in: Inverse Problems, 2011, vol. 27.
  • 14A. Cossonnière, H. Haddar.

    The Electromagnetic Interior Transmission Problem for Regions with Cavities, in: SIAM Journal on Mathematical Analysis, 2011, vol. 43, no 4, p. 1698-1715. [ DOI : 10.1137/100813890 ]

    http://link.aip.org/link/?SJM/43/1698/1
  • 15B. Delourme, H. Haddar, P. Joly.

    Approximate Models for Wave Propagation Across Thin Periodic Interfaces, in: Jounal de Mathematiques Pures et Appliquees, 2011, at press.
  • 16G. Faccanoni, S. Kokh, G. Allaire.

    Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, in: M2AN, 2012, to appear.
  • 17H. Haddar, A. Lechleiter.

    Electromagnetic Wave Scattering from Rough Penetrable Layers, in: SIAM J. Appl. Math., 2011, vol. 43, p. 2418–2443.

    http://dx.doi.org/10.1137/100783613
  • 18A. Lechleiter.

    Explicit Characterization of the Support of Non-Linear Inclusions, in: Inverse Problems and Imaging, 2011, vol. 5, p. 675–694.

    http://dx.doi.org/10.3934/ipi.2011.5.675
  • 19A. Lechleiter, D. L. Nguyen.

    Spectral Volumetric Integral Equation Methods for Acoustic Medium Scattering in a Planar Homogeneous 3D-Waveguide, in: IMA J. Num. Math., 2011.

    http://dx.doi.org/10.1093/imanum/drr036
  • 20E. Mandonnet, O. Pantz.

    The role of electrode direction during axonal bipolar electrical stimulation : a bidomain computational model study, in: Acta Neurochir., 2011, vol. 153, p. 2351–2355.

    http://dx.doi.org/10.1007/s00701-011-1151-x
  • 21O. Ozdemir, H. Haddar, A. Yaka.

    Reconstruction of the electromagnetic field in layered media using the concept of approximate transmission conditions, in: Transactions on Antennas and Propagation, IEEE, November 2011, vol. 59, no 8, p. 2964 - 2972.

    http://dx.doi.org/10.1109/TAP.2011.2158967
  • 22O. Pantz.

    A frictionless contact algorithm for deformable bodies, in: ESAIM Math. Model. Numer. Anal., 2011, vol. 45, no 2, p. 235–254.

    http://dx.doi.org/10.1051/m2an/2010041

International Conferences with Proceedings

  • 23Z. Jiang, M. El-Guedri, H. Haddar, A. Lechleiter.

    Eddy current tomography of deposits in steam generator, in: 2011 EUSIPCO Proc, 2011, p. 2054–2058.

Scientific Books (or Scientific Book chapters)

  • 24F. Cakoni, H. Haddar.

    chapter, in: Inside Out - II, Transmission Eigenvalues in Inverse Scattering Theory, G. Uhlman (editor), note, 2012, to appear.

Internal Reports

  • 25L. Bourgeois, N. Chaulet, H. Haddar.

    On simultaneous identification of a scatterer and its generalized impedance boundary condition, INRIA, June 2011, no RR-7645.

    http://hal.inria.fr/inria-00599567/en
  • 26G. Giorgi, H. Haddar.

    Computing estimates on material properties from transmission eigenvalues, INRIA, September 2011, no RR-7729.

    http://hal.inria.fr/inria-00619232/en
  • 27H. Haddar, A. Lechleiter, S. Marmorat.

    Une méthode d'échantillonnage linéaire dans le domaine temporel : le cas des obstacles de type Robin-Fourier, INRIA, November 2011, no RR-7835.

    http://hal.inria.fr/hal-00651301/en/
  • 28H. Haddar, G. Migliorati.

    Numerical analysis of the Factorization Method for Electrical Impedance Tomography in inhomogeneous medium, INRIA, November 2011, no RR-7801.

    http://hal.inria.fr/hal-00641260/en
  • 29E. Mandonnet, O. Pantz.

    On the activation of a fasciculus of axons, CMAP, École polytechnique, 2011, no 714.

Other Publications

  • 30G. Allaire, R. Brizzi, J.-F. Dufrêche, A. Mikelic, A. Piatnitski.

    Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients, Submitted.
  • 31G. Allaire, Z. Habibi.

    Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem in a Heterogeneous Domain, Preprint.
  • 32F. Ben Hassen, Y. Boukari, H. Haddar.

    Application of the linear sampling method to identify cracks with impedance boundary conditions, 2011, under revision.
  • 33L. Bourgeois, N. Chaulet, H. Haddar.

    On simultaneous identification of a scatterer and its generalized impedance boundary condition, 2012, submitted.
  • 34F. Cakoni, D. Colton, H. Haddar.

    The Interior Transmission Eigenvalue Problem for Absorbing Media, 2012, submitted.
  • 35F. Cakoni, A. Cossonnière, H. Haddar.

    Transmission eigenvalues for inhomogeneous media containing obstacles, 2012, submitted.
  • 36H. Haddar, A. Lechleiter.

    A Factorization Method for a Far-Field Inverse Scattering Problem in the Time Domain, 2012, submitted.
  • 37J.-R. Li, T. Nguyen, H. Haddar, D. Grebenkov, C. Poupon, D. L. Bihan.

    Homogenized diffusion tensor and approximate analytical formulae for the long time apparent diffusion coefficient, In preparation.
  • 38J.-R. Li, H. V. Nguygen, C. Poupon, D. L. Bihan.

    General ODE model of diffusion MRI signal attenuation, In preparation.
References in notes
  • 39A post-treatment of the homogenization method in shape optimization, 8th World Congress on Structural and Multidisciplinary Optimization, 2009.
  • 40O. Pantz, K. Trabelsi.

    A post-treatment of the homogenization method for shape optimization, in: SIAM J. Control Optim., 2008, vol. 47, no 3, p. 1380–1398.

    http://dx.doi.org/10.1137/070688900