Major publications by the team in recent years
  • 1Z. Ariola, H. Herbelin, A. Sabry.

    A Type-Theoretic Foundation of Delimited Continuations, in: Higher Order and Symbolic Computation, 2007.

  • 2P.-L. Curien.

    Substitution up to isomorphism, in: Fundamenta Informaticae, 1993, vol. 19, p. 51-85.
  • 3P.-L. Curien, H. Herbelin.

    The duality of computation, in: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP '00), Montreal, Canada, SIGPLAN Notices 35(9), ACM, September 18-21 2000, p. 233–243. [ DOI : 10.1145/351240.351262 ]

  • 4H. Herbelin, S. Ghilezan.

    An Approach to Call-by-Name Delimited Continuations, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, G. C. Necula, P. Wadler (editors), ACM, January 7-12 2008, p. 383-394.
  • 5H. Herbelin.

    An intuitionistic logic that proves Markov's principle, in: Logic In Computer Science, Edinburgh, Royaume-Uni, IEEE Computer Society, 2010.

  • 6G. Munch-Maccagnoni.

    Focalisation and Classical Realisability, in: Computer Science Logic '09, E. Grädel, R. Kahle (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, p. 409–423.
  • 7Y. Régis-Gianas, F. Pottier.

    A Hoare Logic for Call-by-Value Functional Programs, in: Proceedings of the Ninth International Conference on Mathematics of Program Construction (MPC'08), Lecture Notes in Computer Science, Springer, July 2008, vol. 5133, p. 305–335.

  • 8A. Saurin.

    Separation with Streams in the Λμ-calculus, in: Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, p. 356-365.
  • 9A. Saurin.

    On the Relations between the Syntactic Theories of λμ-Calculi, in: 17th Annual Conference of the EACSL 17th EACSL Annual Conference on Computer Science Logic - CSL 2008, Bertinoro Italie, Lecture notes in computer science, Springer, 2008, vol. 5213, p. 154-168. [ DOI : 10.1007/978-3-540-87531-4_13 ]

  • 10M. Sozeau, N. Oury.

    First-Class Type Classes, in: Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, O. A. Mohamed, C. Muñoz, S. Tahar (editors), Lecture Notes in Computer Science, Springer, 2008, vol. 5170, p. 278-293.
Publications of the year

Articles in International Peer-Reviewed Journal

International Conferences with Proceedings

  • 12Z. Ariola, H. Herbelin, A. Saurin.

    Classical Call-by-need and duality, in: TLCA 2011 - Typed Lambda Calculi and Applications, Novi Sad, Serbia, C.-H. L. Ong (editor), Lecture Notes in Computer Science, Springer, June 2011, vol. 6690, p. 27-44. [ DOI : 10.1007/978-3-642-21691-6_6 ]

  • 13A. Saurin, M. Basaldella, K. Terui.

    On the Meaning of Focalization, in: workshop on Games, Dialog and Interaction, Paris, France, A. Lecomte, S. Tronçon (editors), LNAI, Springer-Verlag, 2011, vol. 6505, p. 78-87.


National Conferences with Proceeding

Conferences without Proceedings

  • 15M. Puech, Y. Régis-Gianas.

    Safe Incremental Type Checking, in: TLDI 2012 - Seventh ACM SIGPLAN Workshop on Types in Language Design and Implementation, Philadelphia, United States, January 2012, 2 pages.


Internal Reports

Other Publications

  • 17H. Herbelin.

    A constructive proof of the axiom of dependent choice, compatible with classical logic, 2011.
  • 18H. Herbelin.

    An intuitionistic logic that proves Markov's principle (long version), 2011.
References in notes
  • 19H. P. Barendregt.

    The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.
  • 20G. Barthe, J. Hatcliff, M. H. Sørensen.

    A notion of classical pure type system, in: Electr. Notes Theor. Comput. Sci., 1997, vol. 6, p. 4-59.
  • 21Y. Bertot, P. Castéran.

    Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, Springer, 2004.
  • 22A. Church.

    A set of Postulates for the foundation of Logic, in: Annals of Mathematics, 1932, vol. 2, p. 33, 346-366.
  • 23T. Coquand.

    Une théorie des Constructions, University Paris 7, January 1985.
  • 24T. Coquand.

    Pattern Matching with Dependent Types, in: Electronic Proceedings of the Third Annual BRA Workshop on Logical Frameworks (Båstad, Sweden), 1992.
  • 25T. Coquand, G. Huet.

    Constructions : A Higher Order Proof System for Mechanizing Mathematics, in: EUROCAL'85, Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203.
  • 26T. Coquand, C. Paulin-Mohring.

    Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417.
  • 27H. B. Curry, R. Feys, W. Craig.

    Combinatory Logic, North-Holland, 1958, vol. 1, §9E.
  • 28M. Felleisen, D. P. Friedman, E. Kohlbecker, B. F. Duba.

    Reasoning with continuations, in: First Symposium on Logic and Computer Science, 1986, p. 131-141.
  • 29A. Filinski.

    Representing Monads, in: Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL'94, Portland, OR, USA, ACM Press, 17-21 Jan 1994, p. 446-457.
  • 30G. Gentzen.

    Untersuchungen über das logische Schließen, in: Mathematische Zeitschrift, 1935, vol. 39, p. 176–210,405–431.
  • 31J.-Y. Girard.

    Une extension de l'interpretation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types, in: Second Scandinavian Logic Symposium, J. Fenstad (editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, p. 63-92.
  • 32H. Goguen, C. McBride, J. McKinna.

    Eliminating Dependent Pattern Matching, in: Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, K. Futatsugi, J.-P. Jouannaud, J. Meseguer (editors), Lecture Notes in Computer Science, Springer, 2006, vol. 4060, p. 521-540.
  • 33G. Gonthier, B. Ziliani, A. Nanevski, D. Dreyer.

    How to make ad hoc proof automation less ad hoc, in: ICFP, M. M. T. Chakravarty, Z. Hu, O. Danvy (editors), ACM, 2011, p. 163-175.
  • 34T. G. Griffin.

    The Formulae-as-Types Notion of Control, in: Conf. Record 17th Annual ACM Symp. on Principles of Programming Languages, POPL '90, San Francisco, CA, USA, 17-19 Jan 1990, ACM Press, 1990, p. 47–57.
  • 35H. Herbelin.

    An intuitionistic logic that proves Markov's principle, in: Logic In Computer Science, United Kingdom Edinburgh, IEEE Computer Society, 2010.

  • 36M. Hofmann.

    On the Interpretation of Type Theory in Locally Cartesian Closed Categories, in: Computer Science Logic (CSL'94), Springer Lecture Notes in Computer Science 933, 1994, p. 427-441.
  • 37W. A. Howard.

    The formulae-as-types notion of constructions, in: to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, 1980, Unpublished manuscript of 1969.
  • 38D. Ilik.

    Delimited control operators prove Double-negation Shift, 2010.

  • 39J.-L. Krivine.

    A call-by-name lambda-calculus machine, in: Higher Order and Symbolic Computation, 2005.
  • 40J.-L. Krivine.

    Structures de réalisabilité, RAM et ultrafiltre sur N, in: CoRR, 2008, vol. abs/0809.2394.
  • 41J.-L. Krivine.

    Un interpréteur du lambda-calcul, 1986, Unpublished.
  • 42P. Landin.

    The mechanical evaluation of expressions, in: The Computer Journal, January 1964, vol. 6, no 4, p. 308–320.
  • 43P. Landin.

    A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965, no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation , 11(2), 1998.
  • 44P. Martin-Löf.

    A theory of types, University of Stockholm, 1971, no 71-3.
  • 45M. Parigot.

    Free Deduction: An Analysis of "Computations" in Classical Logic., in: Logic Programming, Second Russian Conference on Logic Programming, St. Petersburg, Russia, A. Voronkov (editor), Lecture Notes in Computer Science, Springer, September 11-16 1991, vol. 592, p. 361-380.

  • 46J. C. Reynolds.

    Definitional interpreters for higher-order programming languages, in: ACM '72: Proceedings of the ACM annual conference, New York, NY, USA, ACM Press, 1972, p. 717–740.
  • 47J. C. Reynolds.

    Towards a theory of type structure, in: Symposium on Programming, B. Robinet (editor), Lecture Notes in Computer Science, Springer, 1974, vol. 19, p. 408-423.
  • 48 The Coq Development Team.

    The Coq Reference Manual, version 8.2, September 2008.

  • 49N. de Bruijn.

    AUTOMATH, a language for mathematics, Technological University Eindhoven, November 1968, no 66-WSK-05.