EN FR
Homepage Inria website


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, p. 541–560.

    http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
  • 2M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux, S. Piperno.

    Dynamic non-planar crack rupture by a finite volume method, in: Geophys. J. Int., 2007, vol. 171, p. 271-285.

    http://dx.doi.org/10.1111/j.1365-246X.2006.03500.x
  • 3M. Bernacki, L. Fezoui, S. Lanteri, S. Piperno.

    Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, p. 744–763.

    http://dx.doi.org/10.1016/j.apm.2005.06.015
  • 4A. Catella, V. Dolean, S. Lanteri.

    An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation, in: COMPEL, 2010, vol. 29, no 3, p. 602–625.

    http://dx.doi.org/10.1108/03321641011028215
  • 5S. Delcourte, L. Fezoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, p. 70–89.

    http://dx.doi.org/10.1051/proc/2009020
  • 6V. Dolean, H. Fahs, L. Fezoui, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, p. 512–526.

    http://dx.doi.org/10.1016/j.jcp.2009.09.038
  • 7V. Dolean, H. Fol, S. Lanteri, R. Perrussel.

    Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, p. 435-445.

    http://dx.doi.org/10.1016/j.cam.2007.05.026
  • 8V. Dolean, M. Gander, L. Gerardo-Giorda.

    Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, p. 2193–2213.

    http://dx.doi.org/10.1137/080728536
  • 9V. Dolean, S. Lanteri, R. Perrussel.

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, p. 2044–2072.

    http://dx.doi.org/10.1016/j.jcp.2007.10.004
  • 10V. Dolean, S. Lanteri, R. Perrussel.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 954–957.

    http://dx.doi.org/10.1109/TMAG.2008.915830
  • 11V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, p. 941–962.

    http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
  • 12H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, p. 193–216.
  • 13H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, p. 275–300.
  • 14L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, p. 1149–1176.

    http://dx.doi.org/DOI:10.1051/m2an:2005049
  • 15S. Piperno, M. Remaki, L. Fezoui.

    A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes, in: SIAM J. Num. Anal., 2002, vol. 39, no 6, p. 2089–2108.

    http://dx.doi.org/10.1137/S0036142901387683
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 16J. Charles.

    Amélioration des performances de méthodes Galerkin discontinues d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes, Université de Nice Sophia-Antipolis, Apr 2012.

    http://hal.inria.fr/tel-00718571

Articles in International Peer-Reviewed Journals

  • 17M. E. Bouajaji, V. Dolean, M. Gander, S. Lanteri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, p. A20148–A2071. [ DOI : 10.1137/110842995 ]
  • 18M. E. Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2012, to appear. [ DOI : 10.1016/j.amc.2011.03.140 ]
  • 19V. Dolean, F. Nataf, R. Scheichl, N. Spillane.

    Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet–to–Neumann maps, in: Comp. Meth. Appl. Math., Jan 2012, vol. 12, no 4, p. 391–414. [ DOI : 10.2478/cmam-2012-0027 ]
  • 20A. Drissaoui, S. Lanteri, P. Lévêque, F. Musy, L. Nicolas, R. Perrussel, D. Voyer.

    A stochastic collocation method combined with a reduced basis method to compute uncertainties in numerical dosimetry, in: IEEE Trans. Magn., Feb 2012, vol. 48, no 2, p. 563–566. [ DOI : 10.1109ach/TMAG.2011.2174347 ]

    http://hal.inria.fr/hal-00675034
  • 21M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet, F. Laurent.

    New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators, in: SIAM J. Sci. Comput., 2012, vol. 34, no 1, p. A76–A104.

    http://dx.doi.org/10.1137/100816869
  • 22L. Li, S. Lanteri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2012, to appear.
  • 23L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2012, to appear. [ DOI : 10.1007/s10915-012-9669-5 ]
  • 24L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, p. 1225–1246. [ DOI : 10.1051/m2an/2012002 ]

    http://hal.inria.fr/inria-00565217
  • 25C. Scheid, S. Lanteri.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2012, to appear.

International Conferences with Proceedings

  • 26M. E. Bouajaji, N. Gmati, S. Lanteri, J. Salhi.

    Coupling of an exact transparent boundary condition with a discontinuous Galerkin method for the solution of the time-harmonic Maxwell equations, in: International Conference on Spectral and High Order Methods (ICOSAHOM 2012), Gammarth, Tunisia, Lecture Notes in Computational Science and Engineering, Springer, 2012.
  • 27T. Cabel, J. Charles, S. Lanteri.

    Performance evaluation of a multi-GPU enabled finite element method for computational electromagnetics, in: 4th Workshop on UnConventional High Performance Computing 2011 (UCHPC 2011). European Conference on Parallel and Distributed Computing (Euro-Par 2011), Bordeaux, France, Lecture Notes in Computer Sciences, Springer, 2012, vol. 7156, p. 355–364.
  • 28V. Dolean, M. E. Bouajaji, M. Gander, S. Lanteri, R. Perrussel.

    Optimized Schwarz algorithms for the time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: 21st International Conference on Domain Decomposition Methods (DD21), Rennes, France, Lecture Notes in Computational Science and Engineering, Springer, 2012.
  • 29C. Durochat, S. Lanteri, L. Moya, J. Viquerat, S. Descombes, C. Scheid.

    Some recent developments of the discontinous Galerkin method for time-domain electromagnetics, in: 5th International Workshop on Theoretical and Computational Nano-Photonics (TaCoNa-Photonics 2012), Bad Honnef, Germany, American Institute of Physics (AIP) Conference Proceedings Series, 2012.
  • 30C. Durochat, C. Scheid, S. Lanteri.

    High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics, in: 2012 International Conference on Electromagnetics in Advanced Applications (ICEAA'12), Cape Town, South Africa, 2012.
  • 31C. Girard, N. Raveu, R. Perrussel, J. Li, S. Lanteri.

    1d WCIP and FEM hybridization, in: European Conference and Exhibition on Electromagnetics (EUROEM 2012), Toulouse, France, 2012, 143 p.

    http://hal.inria.fr/hal-00725249
  • 32S. Lanteri, L. Li, R. Perrussel.

    Schwarz methods for time-harmonic Maxwell's equations discretized by a hybridized discontinuous Galerkin method, in: 21st International Conference on Domain Decomposition Methods (DD21), Rennes, France, Lecture Notes in Computational Science and Engineering, Springer, 2012.
  • 33L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a high order discontinuous Galerkin method for Maxwell equations, in: International Conference on Spectral and High Order Methods (ICOSAHOM 2012), Gammarth, Tunisia, Lecture Notes in Computational Science and Engineering, Springer, 2012.
  • 34Z. Peng, J.-F. Lee, V. Dolean, M. Gander, S. Lanteri.

    Speed up non-conformal DDM convergence using an asymmetric optimal transmission condition, in: 21st International Conference on Domain Decomposition Methods (DD21), Rennes, France, Lecture Notes in Computational Science and Engineering, Springer, 2012.
  • 35F. Peyrusse, N. Glinsky, C. Gélis, S. Lanteri.

    A high-order discontinuous Galerkin method for viscoelastic wave propagation, in: International Conference on Spectral and High Order Methods (ICOSAHOM 2012), Gammarth, Tunisia, Lecture Notes in Computational Science and Engineering, Springer, 2012.

National Conferences with Proceeding

  • 36S. Lanteri, L. Li, R. Perrussel.

    A hybridized discontinuous Galerkin method for 3d time-harmonic Maxwell's equations, in: 7ème Conférence Européenne sur les Méthodes Numériques en Electromagnétisme (NUMELEC 2012), Marseille, France, 2012, p. 17–18.

    http://hal.inria.fr/hal-00725079

Conferences without Proceedings

  • 37C. Girard, N. Raveu, S. Lanteri, R. Perrussel.

    1d WCIP and FEM hybridization, in: 7ème Conférence Européenne sur les Méthodes Numériques en Electromagnétisme (NUMELEC 2012), Marseille, France, 2012, p. 74–75.

    http://hal.inria.fr/hal-00725088
  • 38N. Glinsky, E. Bertrand.

    Topographical site amplifications investigation by combining numerical and field experiments: the case of Rognes, south east France, in: 15th World Conference on Earthquake Engineering (15 WCEE), Lisbon, Portugal, 2012.
  • 39N. Glinsky, D. Mercerat.

    A high-order discontinuous Galerkin method for seismic wave propagation in heterogeneous media, in: 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 2012.
  • 40F. Peyrusse, N. Glinsky, S. Lanteri.

    Méthode Galerkin discontinue pour la propagation d'ondes sismiques en milieu viscoélastique, in: Congrès National d'Analyse Numérique (CANUM 2012), Superbesse, France, 2012.

Internal Reports

  • 41S. Descombes, S. Lanteri, L. Moya.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, Inria, May 2012, no RR-7983, 28 p.

    http://hal.inria.fr/hal-00702802
  • 42C. Durochat, C. Scheid.

    Etude de convergence a-priori d'une méthode Galerkin discontinue en maillage hybride et non-conforme pour résoudre les équations de Maxwell instationnaires, Inria, Apr 2012, no RR-7933.

    http://hal.inria.fr/hal-00688374
References in notes
  • 43B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 44B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 45C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 46K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 47B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, p. 1319–1365.
  • 48J. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 49J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 50A. Quarteroni, A. Valli.

    Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 1999.
  • 51B. Smith, P. Bjorstad, W. Gropp.

    Domain decomposition and parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996.
  • 52P. Solin, K. Segeth, I. Dolezel.

    Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
  • 53A. Toselli, O. Widlund.

    Domain Decomposition Methods. Algorithms and theory, Springer Series in Computational Mathematics, Springer Verlag, 2004, vol. 34.
  • 54J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, p. 889–901.
  • 55K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, p. 302–307.