Section: Research Program
Bayesian Inference
Acquisition of 4D Models can often be conveniently formulated as a Bayesian estimation or learning problem. Various generative and graphical models can be proposed for the problems of occupancy estimation, 3D surface tracking in a time sequence, and motion segmentation. The idea of these generative models is to predict the noisy measurements (e.g. pixel values, measured 3D points or speed quantities) from a set of parameters describing the unobserved scene state, which in turn can be estimated using Bayes' rule to solve the inverse problem. The advantages of this type of modeling are numerous, as they enable to model the noisy relationships between observed and unknown quantities specific to the problem, deal with outliers, and allow to efficiently account for various types of priors about the scene and its semantics. Sensor models for different modalities can also easily be seamlessly integrated and jointly used, which remains central to our goals.
Since the acquisition problems often involve a large number of variables, a key challenge is to exhibit models which correctly account for the observed phenoma, while keeping reasonable estimation times, sometimes with a real-time objective. Maximum likelihood / maximum a posteriori estimation and approximate inference techniques, such as Expectation Maximization, Variational Bayesian inference, or Belief Propagation, are useful tools to keep the estimation tractable. While 3D acquisition has been extensively explored, the research community faces many open challenges in how to model and specify more efficient priors for 4D acquisition and temporal evolution.