EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.

    http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
  • 2M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux, S. Piperno.

    Dynamic non-planar crack rupture by a finite volume method, in: Geophys. J. Int., 2007, vol. 171, pp. 271-285.

    http://dx.doi.org/10.1111/j.1365-246X.2006.03500.x
  • 3M. Bernacki, L. Fezoui, S. Lantéri, S. Piperno.

    Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, pp. 744–763.

    http://dx.doi.org/10.1016/j.apm.2005.06.015
  • 4M. E. Bouajaji, V. Dolean, M. Gander, S. Lantéri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071. [ DOI : 10.1137/110842995 ]
  • 5A. Catella, V. Dolean, S. Lantéri.

    An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation, in: COMPEL, 2010, vol. 29, no 3, pp. 602–625.

    http://dx.doi.org/10.1108/03321641011028215
  • 6S. Delcourte, L. Fezoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.

    http://dx.doi.org/10.1051/proc/2009020
  • 7V. Dolean, H. Fahs, L. Fezoui, S. Lantéri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.

    http://dx.doi.org/10.1016/j.jcp.2009.09.038
  • 8V. Dolean, H. Fol, S. Lantéri, R. Perrussel.

    Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, pp. 435-445.

    http://dx.doi.org/10.1016/j.cam.2007.05.026
  • 9V. Dolean, M. Gander, L. Gerardo-Giorda.

    Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, pp. 2193–2213.

    http://dx.doi.org/10.1137/080728536
  • 10V. Dolean, S. Lantéri, R. Perrussel.

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, pp. 2044–2072.

    http://dx.doi.org/10.1016/j.jcp.2007.10.004
  • 11V. Dolean, S. Lantéri, R. Perrussel.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, pp. 954–957.

    http://dx.doi.org/10.1109/TMAG.2008.915830
  • 12V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.

    http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
  • 13H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 14H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 15H. Fahs, A. Hadjem, S. Lantéri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.

    http://dx.doi.org/10.1109/TAP.2011.2165471
  • 16L. Fezoui, S. Lantéri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.

    http://dx.doi.org/DOI:10.1051/m2an:2005049
  • 17L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246. [ DOI : 10.1051/m2an/2012002 ]

    http://hal.inria.fr/inria-00565217
  • 18S. Piperno, M. Remaki, L. Fezoui.

    A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes, in: SIAM J. Num. Anal., 2002, vol. 39, no 6, pp. 2089–2108.

    http://dx.doi.org/10.1137/S0036142901387683
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 19C. Durochat.

    Méthode de type Galerkin discontinu en maillages multi-éléments (et non-conformes) pour la résolution numérique des équations de Maxwell instationnaires, Université Nice Sophia Antipolis, January 2013.

    http://hal.inria.fr/tel-00805935

Articles in International Peer-Reviewed Journals

  • 20S. Descombes, C. Durochat, S. Lantéri, L. Moya, C. Scheid, J. Viquerat.

    Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, November 2013, vol. 11, no 4, pp. 291-302. [ DOI : 10.1016/j.photonics.2013.06.005 ]

    http://hal.inria.fr/hal-00915347
  • 21T. Dumont, M. Duarte, S. Descombes, M.-A. Dronne, M. Massot, V. Louvet.

    Simulation of human ischemic stroke in realistic 3D geometry, in: Communications in Nonlinear Science and Numerical Simulation, June 2013, vol. 18, no 6, pp. 1539-1557. [ DOI : 10.1016/j.cnsns.2012.10.002 ]

    http://hal.inria.fr/hal-00546223
  • 22C. Durochat, S. Lantéri, R. Leger.

    A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, October 2013. [ DOI : 10.1002/jnm.1943 ]

    http://hal.inria.fr/hal-00915353
  • 23C. Durochat, S. Lantéri, C. Scheid.

    High order non-conforming multi-element Discontinuous Galerkin method for time domain electromagnetics, in: Applied Mathematics and Computation, November 2013, vol. 224, pp. 681-704. [ DOI : 10.1016/j.amc.2013.08.069 ]

    http://hal.inria.fr/hal-00797973
  • 24M. El Bouajaji, S. Lantéri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Applied Mathematics and Computation, March 2013, vol. 219, no 13, pp. 7241-7251. [ DOI : 10.1016/j.amc.2011.03.140 ]

    http://hal.inria.fr/hal-00922826
  • 25S. Lantéri, C. Scheid.

    Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA Journal of Numerical Analysis, 2013, vol. 33, no 2, pp. 432-459. [ DOI : 10.1093/imanum/drs008 ]

    http://hal.inria.fr/hal-00874752
  • 26L. Li, S. Lantéri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, pp. 1112 - 1138. [ DOI : 10.1108/03321641311306196 ]

    http://hal.inria.fr/hal-00906142
  • 27L. Li, S. Lantéri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: Journal of Computational Physics, January 2014, vol. 256, pp. 563-581. [ DOI : 10.1016/j.jcp.2013.09.003 ]

    http://hal.inria.fr/hal-00795125
  • 28L. Moya, S. Descombes, S. Lantéri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: Journal of Scientific Computing, July 2013, vol. 56, no 1, pp. 190–218. [ DOI : 10.1007/s10915-012-9669-5 ]

    http://hal.inria.fr/hal-00922844

International Conferences with Proceedings

  • 29S. Descombes, S. Lantéri, L. Moya.

    High-order locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: ICOSAHOM 2012, Gammarth, Tunisia, M. Azaïez, H. E. Fekih, J. S. Hesthaven (editors), Lecture Notes in Computational Science and Engineering, Springer, January 2014, vol. 95, pp. 205-216. [ DOI : 10.1007/978-3-319-01601-6_16 ]

    http://hal.inria.fr/hal-00922157
  • 30M. El Bouajaji, N. Gmati, S. Lantéri, J. Salhi.

    Coupling of an exact transparent boundary condition with a DG method for the solution of the time-harmonic Maxwell equations, in: ICOSAHOM 2012, Gammarth, Tunisia, M. Azaïez, H. E. Fekih, J. S. Hesthaven (editors), Lecture Notes in Computational Science and Engineering, Springer, January 2014, vol. 95, pp. 238-249. [ DOI : 10.1007/978-3-319-01601-6_19 ]

    http://hal.inria.fr/hal-00922163
  • 31C. Girard, S. Lantéri, R. Perrussel, N. Raveu.

    Coupling of a method of moments adapted to planar circuit and volumic methods, in: COMPUMAG 2013, Budapest, Hungary, 2013, pp. PC5-16.

    http://hal.inria.fr/hal-00907090
  • 32L. Moya.

    Locally Implicit Discontinuous Galerkin Methods for Time-Domain Maxwell's Equations, in: ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, United Kingdom, Springer, January 2013, pp. 129-137.

    http://hal.inria.fr/hal-00939385
  • 33F. Peyrusse, N. Glinsky, C. Gélis, S. Lantéri.

    A high-order discontinuous Galerkin method for viscoelastic wave propagation, in: ICOSAHOM 2012, Gammarth, Tunisia, M. Azaïez, H. E. Fekih, J. S. Hesthaven (editors), Lecture Notes in Computational Science and Engineering, Springer, January 2014, vol. 95, pp. 361-372. [ DOI : 10.1007/978-3-319-01601-6_29 ]

    http://hal.inria.fr/hal-00922175

National Conferences with Proceedings

  • 34C. Girard, N. Raveu, S. Lantéri, R. Perrussel.

    Hybridation entre la WCIP et des méthodes volumiques, in: 18èmes Journées Nationales Microondes, Paris, France, 2013, pp. J1-AP3-2.

    http://hal.inria.fr/hal-00914400

Internal Reports

  • 35F. Peyrusse, N. Glinsky, C. Gélis, S. Lantéri.

    Une méthode Galerkin discontinue d'ordre élevé pour la propagation d'ondes sismiques en milieu viscoélastique, Inria, February 2013, no RR-8242.

    http://hal.inria.fr/hal-00789682
  • 36J. Viquerat, K. Maciej, S. Lantéri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

    http://hal.inria.fr/hal-00819758

Other Publications

  • 37M. Bonnasse-Gahot, S. Lantéri, J. Diaz, H. Calandra.

    Discontinuous Galerkin methods for solving Helmholtz isotropic wave equations for seismic applications, in: HOSCAR - 3rd Brazil-French workshop on High performance cOmputing and SCientific dAta management dRiven by highly demanding applications (Inria-CNPq), Bordeaux, France, September 2013.

    http://hal.inria.fr/hal-00929971
  • 38D. Chiron, C. Scheid.

    Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension two, October 2013.

    http://hal.inria.fr/hal-00873794
  • 39S. Delcourte, N. Glinsky.

    Analysis of a discontinuous galerkin method for elastodynamic equations. application to 3d wave propagation, February 2013.

    http://hal.inria.fr/hal-00787539
  • 40V. Dolean, M. Gander, S. Lantéri, J.-F. Lee, Z. Peng.

    Effective Transmission Conditions for Domain Decomposition Methods applied to the Time-Harmonic Curl-Curl Maxwell's equations, December 2013.

    http://hal.inria.fr/hal-00912354
  • 41V. Dolean, M. Gander, S. Lantéri, J.-F. Lee, Z. Peng.

    Optimized Schwarz Methods for curl-curl time-harmonic Maxwell's equations, June 2013.

    http://hal.inria.fr/hal-00830282
  • 42M. El Bouajaji, V. Dolean, M. Gander, S. Lantéri, R. Perrussel.

    DG discretization of optimized Schwarz methods for Maxwell's equations, June 2013.

    http://hal.inria.fr/hal-00830274
References in notes
  • 43B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 44B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 45C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 46K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 47K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 48B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 49A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche..

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 50H. Fernando, C. Harder, D. Paredes, F. Valentin.

    Numerical multiscale methods for a reaction dominated model, in: Comput. Methods Appl. Mech. Engrg., 2012, vol. 201–204, pp. 228–244.
  • 51C. Harder, D. Paredes, F. Valentin.

    A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, 2011, no 05/2011.
  • 52J. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 53J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 54X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 55M. Klemm.

    Novel directional nanoantennas for single-emitter sources and wireless nano-links, in: J. Optics, 2012, vol. 2012, no ID 348306.
  • 56J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 57A. Quarteroni, A. Valli.

    Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 1999.
  • 58B. Smith, P. Bjorstad, W. Gropp.

    Domain decomposition and parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996.
  • 59P. Solin, K. Segeth, I. Dolezel.

    Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
  • 60A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 61A. Toselli, O. Widlund.

    Domain Decomposition Methods. Algorithms and theory, Springer Series in Computational Mathematics, Springer Verlag, 2004, vol. 34.
  • 62J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 63K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 64Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.