Bibliography
Major publications by the team in recent years
-
1P. Balança.
A increment type set-indexed Markov property, 2012.
http://arxiv.org/abs/1207.6568 -
2J. Barral, J. Lévy Véhel.
Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, in: Electronic Journal of Probability, 2004, vol. 9, pp. 508–543. -
3O. Barrière, J. Lévy Véhel.
Application of the Self Regulating Multifractional Process to cardiac interbeats intervals, in: J. Soc. Fr. Stat., 2009, vol. 150, no 1, pp. 54–72. -
4O. Barrière, A. Echelard, J. Lévy Véhel.
Self-Regulating Processes, in: Electronic Journal of Probability, December 2012. [ DOI : 10.1214/EJP.v17-2010 ]
http://hal.inria.fr/hal-00749742 -
5F. Chalot, Q. V. Dinh, E. Herbin, L. Martin, M. Ravachol, G. Rogé.
Estimation of the impact of geometrical uncertainties on aerodynamic coefficients using CFD, in: 10th AIAA Non-Deterministic Approaches, Schaumburg, USA, April 2008. -
6K. Daoudi, J. Lévy Véhel, Y. Meyer.
Construction of continuous functions with prescribed local regularity, in: Journal of Constructive Approximation, 1998, vol. 014, no 03, pp. 349–385. -
7Y. Deremaux, J. Négrier, N. Piétremont, E. Herbin, M. Ravachol.
Environmental MDO and uncertainty hybrid approach applied to a supersonic business jet, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization conference, 2008, Victoria. -
8A. Echelard, O. Barrière, J. Lévy Véhel.
Terrain modelling with multifractional Brownian motion and self-regulating processes, in: ICCVG 2010, Warsaw, Poland, Lecture Notes in Computer Science, Springer, 2010, vol. 6374, pp. 342-351.
http://hal.inria.fr/inria-00538907/en -
9A. Echelard, J. Lévy Véhel.
Self-regulating processes-based modeling for arrhythmia characterization, in: Imaging and Signal Processing in Health Care and Technology, Baltimore, USA, May 2012.
http://hal.inria.fr/hal-00670064 -
10K. Falconer, R. Le Guével, J. Lévy Véhel.
Localisable moving average stable and multistable processes, in: Stoch. Models, 2009, vol. 25, pp. 648–672. -
11K. Falconer, J. Lévy Véhel.
Multifractional, multistable, and other processes with prescribed local form, in: J. Theoret. Probab., 2008, vol. 119, pp. 2277–2311, DOI 10.1007/s10959-008-0147-9. -
12L. J. Fermin, J. Lévy Véhel.
Modeling patient poor compliance in in the multi-IV administration case with Piecewise Deterministic Markov Models, 2011, preprint. -
13L. J. Fermin, J. Lévy Véhel.
Variability and singularity arising from poor compliance in a pharmacodynamical model II: the multi-oral case, 2011, preprint. -
14E. Herbin, B. Arras, G. Barruel.
From almost sure local regularity to almost sure Hausdorff dimension for Gaussian fields, 2010, preprint. -
15E. Herbin.
From n parameter fractional brownian motions to n parameter multifractional brownian motions, in: Rocky Mountain Journal of Mathematics, 2006, vol. 36, no 4, pp. 1249–1284. -
16E. Herbin, J. Jakubowski, M. Ravachol, Q. V. Dinh.
Management of uncertainties at the level of global design, in: Symposium "Computational Uncertainties", RTO AVT-147, 2007, Athens. -
17E. Herbin, J. Lebovits, J. Lévy Véhel.
Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motion, in: preprint, 2011. -
18E. Herbin, J. Lévy Véhel.
Stochastic 2-microlocal analysis, in: Stochastic Proc. Appl., 2009, vol. 119, no 7, pp. 2277–2311.
http://arxiv.org/abs/math.PR/0504551 -
19E. Herbin, E. Merzbach.
A characterization of the set-indexed fractional Brownian motion, in: C. R. Acad. Sci. Paris, 2006, vol. Ser. I 343, pp. 767–772. -
20E. Herbin, E. Merzbach.
A set-indexed fractional brownian motion, in: J. of theor. probab., 2006, vol. 19, no 2, pp. 337–364. -
21E. Herbin, E. Merzbach.
The multiparameter fractional Brownian motion, in: Math everywhere, Berlin, Springer, 2007, pp. 93–101.
http://dx.doi.org/10.1007/978-3-540-44446-6_8 -
22E. Herbin, E. Merzbach.
Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion, in: J. of theor. probab., 2009, vol. 22, no 4, pp. 1010–1029. -
23E. Herbin, E. Merzbach.
The set-indexed Lévy process: Stationarity, Markov and sample paths properties, 2010, preprint. -
24E. Herbin, A. Richard.
Hölder regularity for set-indexed processes, in: Submitted, 2011, submitted. -
25K. Kolwankar, J. Lévy Véhel.
A time domain characterization of the fine local regularity of functions, in: J. Fourier Anal. Appl., 2002, vol. 8, no 4, pp. 319–334. -
26J. Lebovits, J. Lévy Véhel.
Stochastic Calculus with respect to multifractional Brownian motion, submitted.
http://hal.inria.fr/inria-00580196/en -
27J. Lévy Véhel, C. Tricot.
On various multifractal spectra, in: Fractal Geometry and Stochastics III, Progress in Probability, Birkhäuser, ISBN 376437070X, 9783764370701, 2004, vol. 57, pp. 23-42, C. Bandt, U. Mosco and M. Zähle (Eds), Birkhäuser Verlag. -
28J. Lévy Véhel, R. Vojak.
Multifractal Analysis of Choquet Capacities: Preliminary Results, in: Advances in Applied Mathematics, January 1998, vol. 20, pp. 1–43. -
29R. Peltier, J. Lévy Véhel.
Multifractional Brownian Motion, Inria, 1995, no 2645.
http://hal.inria.fr/inria-00074045 -
30M. Ravachol, Y. Deremaux, Q. V. Dinh, E. Herbin.
Uncertainties at the conceptual stage: Multilevel multidisciplinary design and optimization approach, in: 26th International Congress of the Aeronautical Sciences, 2008, Anchorage. -
31F. Roueff, J. Lévy Véhel.
A Regularization Approach to Fractional Dimension Estimation, in: Fractals'98, 1998, Malta. -
32S. Seuret, J. Lévy Véhel.
A time domain characterization of of 2-microlocal Spaces, in: J. Fourier Anal. Appl., 2003, vol. 9, no 5, pp. 472–495.
Articles in International Peer-Reviewed Journals
-
33E. Herbin, B. Arras, G. Barruel.
From almost sure local regularity to almost sure Hausdorff dimension for Gaussian fields, in: ESAIM: Probability and Statistics, 2013, 28 p.
http://hal.inria.fr/hal-00862543 -
34R. Le Guével, J. Lévy Véhel, L. Liu.
On two multistable extensions of stable Lévy motion and their semi-martingale representations, in: Journal of Theoretical Probability, November 2013. [ DOI : 10.1007/s10959-013-0528-6 ]
http://hal.inria.fr/hal-00868607 -
35J. Lebovits, J. Lévy Véhel, E. Herbin.
Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions, in: Stochastic Processes and their Applications, 2014, no 124, pp. 678-708, To appear.
http://hal.inria.fr/hal-00653808 -
36J. Lévy Véhel.
Beyond multifractional Brownian motion: new stochastic models for geophysical modelling, in: Nonlinear Processes in Geophysics, January 2013.
http://hal.inria.fr/hal-00875268 -
37P.-E. Lévy Véhel, J. Lévy Véhel.
Variability and singularity arising from poor compliance in a pharmacokinetic model I: the multi-IV case, in: Journal of Pharmacokinetics and Pharmacodynamics, January 2013, vol. 40, no 1, pp. 15-39, To appear.
http://hal.inria.fr/hal-00752114 -
38J. Lévy Véhel, F. Mendivil.
Christiane's Hair, in: American Mathematical Monthly, November 2013, vol. 120, no 9, pp. 771-786, To appear.
http://hal.inria.fr/hal-00744268 -
39J. Lévy Véhel, M. Rams.
Large Deviation Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, in: IEEE/ACM Transactions on Networking, November 2013, vol. 21, no 4, pp. 1309-1321, Accepted for publication.
http://hal.inria.fr/inria-00633195
Conferences without Proceedings
-
40H. El Mekeddem, J. Lévy Véhel.
Value at Risk with tempered multistable motions, in: 30th International French Finance Association Conference, Lyon, France, May 2013.
http://hal.inria.fr/hal-00868634 -
41J. Lévy Véhel.
Financial modelling with tempered multistable motions, in: International Workshop on Statistical modeling, financial data analysis and applications, Venise, Italy, November 2013.
http://hal.inria.fr/hal-00879759
Other Publications
-
42B. Arras.
A white noise approach to stochastic integration with respect to the Rosenblatt process, 2013.
http://hal.inria.fr/hal-00862330 -
43A. Echelard, J. Lévy Véhel.
Local Regularity Preserving Signal Denoising I: Hölder Exponents, November 2013, submitted.
http://hal.inria.fr/hal-00879754 -
44A. Echelard, J. Lévy Véhel, A. Philippe.
Statistical estimation of a class of self-regulating processes, October 2013, Submitted.
http://hal.inria.fr/hal-00868604 -
45L. J. Fermin, J. Lévy Véhel.
Variability and singularity arising from poor compliance in a pharmacokinetic model II: the multi-oral case, October 2013, submitted.
http://hal.inria.fr/hal-00868621 -
46A. Richard.
A fractional Brownian field indexed by and a varying Hurst parameter, 2013, submitted.
http://hal.inria.fr/hal-00922028
-
47E. Alos, O. Mazet, D. Nualart.
Stochastic calculus with respect to Gaussian processes, in: The Annals of Probability, 2001, vol. 29, no 2, pp. 766–801. -
48A. Ayache.
Continuous Gaussian multifractional processes with random pointwise Hölder regularity, in: J. Theoret. Probab., 2013, vol. 26, no 1, pp. 72–93.
http://dx.doi.org/10.1007/s10959-012-0418-3 -
49F. Baccelli, D. Hong.
AIMD, Fairness and Fractal Scaling of TCP Traffic, in: INFOCOM'02, June 2002. -
50P. Balança.
Sample path properties of irregular multifractional Brownian motion, in: Preprint, 2013. -
51A. Benassi, S. Jaffard, D. Roux.
Elliptic Gaussian random processes, in: Rev. Mathemàtica Iberoamericana, 1997, vol. 13, no 1, pp. 19–90. -
52C. Bender.
An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, in: Stochastic Process. Appl., 2003, vol. 104, no 1, pp. 81–106.
http://dx.doi.org/10.1016/S0304-4149(02)00212-0 -
53J. Bony.
Second microlocalization and propagation of singularities for semilinear hyperbolic equations, in: Conf. on Hyperbolic Equations and Related Topics, 1984, pp. 11–49, Kata/Kyoto,Academic Press, Boston. -
54G. Brown, G. Michon, J. Peyrière.
On the multifractal analysis of measures, in: J. Statist. Phys., 1992, vol. 66, no 3, pp. 775–790. -
55M. Davis.
Markov Models and Optimization, Chapman & Hall, London, 1993. -
56L. Decreusefond, A. S. Üstünel.
Stochastic analysis of the fractional Brownian motion, in: Potential Anal., 1999, vol. 10, no 2, pp. 177–214.
http://dx.doi.org/10.1023/A:1008634027843 -
57R. L. Dobrushin, P. Major.
Non-central limit theorems for nonlinear functionals of Gaussian fields, in: Z. Wahrsch. Verw. Gebiete, 1979, vol. 50, no 1, pp. 27–52.
http://dx.doi.org/10.1007/BF00535673 -
58ESReDA.
Uncertainty in Industrial Practice, a Guide to Quantitative Uncertainty Management, Wiley, 2009. -
59K. Falconer.
The local structure of random processes, in: J. London Math. Soc., 2003, vol. 2, no 67, pp. 657–672. -
60K. Falconer.
The multifractal spectrum of statistically self-similar measures, in: J. Theor. Prob., 1994, vol. 7, pp. 681–702. -
61A. Goldberger, L. A. N. Amaral, J. Hausdorff, P. Ivanov, C. Peng, H. Stanley.
Fractal dynamics in physiology: Alterations with disease and aging, in: PNAS, 2002, vol. 99, pp. 2466–2472. -
62G. Ivanoff, E. Merzbach.
Set-Indexed Martingales, Chapman & Hall/CRC, 2000. -
63P. Ivanov, L. A. N. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley.
Multifractality in human heartbeat dynamics, in: Nature, June 1999, vol. 399. -
64S. Jaffard.
Pointwise smoothness, two-microlocalization and wavelet coefficients, in: Publ. Mat., 1991, vol. 35, no 1, pp. 155–168. -
65H. Kempka.
2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability, in: Rev. Mat. Complut., 2009, vol. 22, no 1, pp. 227–251. -
66D. Khoshnevisan.
Multiparameter Processes: an introduction to random fields, Springer, 2002. -
67J. Li, F. Nekka.
A Pharmacokinetic Formalism Explicitly Integrating the Patient Drug Compliance, in: J. Pharmacokinet. Pharmacodyn., 2007, vol. 34, no 1, pp. 115–139. -
68J. Li, F. Nekka.
A probabilistic approach for the evaluation of pharmacological effect induced by patient irregular drug intake, in: J. Pharmacokinet. Pharmacodyn., 2009, vol. 36, no 3, pp. 221–238. -
69M. B. Marcus, J. Rosen.
Markov Processes, Gaussian Processes and Local Times, Cambridge University Press, 2006. -
70Y. Peres, P. Sousi.
Dimension of Fractional Brownian motion with variable drift, in: arXiv, 2013.
http://arxiv-web3.library.cornell.edu/abs/1310.7002?context=math -
71G. Samorodnitsky, M. Taqqu.
Stable Non-Gaussian Random Processes, Chapman and Hall, 1994. -
72S. Stoev, M. Taqqu.
Stochastic properties of the linear multifractional stable motion, in: Adv. Appl. Probab., 2004, vol. 36, pp. 1085–1115. -
73C. A. Tudor.
Analysis of the Rosenblatt process, in: ESAIM Probab. Stat., 2008, vol. 12, pp. 230–257.
http://dx.doi.org/10.1051/ps:2007037 -
74B. Vrijens, J. Urquhart.
New findings about patient adherence to prescribed drug dosing regimens: an introduction to pharmionics, in: Eur. J. Hosp. Pharm. Sci., 2005, vol. 11, no 5, pp. 103–106. -
75B. Vrijens, J. Urquhart.
Patient adherence to prescribed antimicrobial drug dosing regimens, in: J. Antimicrob. Chemother., 2005, vol. 55, pp. 616–627.