EN FR
EN FR
Overall Objectives
Bilateral Contracts and Grants with Industry
Bibliography
Overall Objectives
Bilateral Contracts and Grants with Industry
Bibliography


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

International Conferences with Proceedings

  • 6A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, A. J. Smola.

    Distributed Large-scale Natural Graph Factorization, in: IW3C2 - International World Wide Web Conference, Rio de Janeiro, Brazil, May 2013, 37 p.

    http://hal.inria.fr/hal-00918478
  • 7F. Bach.

    Sharp analysis of low-rank kernel matrix approximations, in: International Conference on Learning Theory (COLT), United States, 2013.

    http://hal.inria.fr/hal-00723365
  • 8F. Bach, E. Moulines.

    Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n), in: Neural Information Processing Systems (NIPS), United States, 2013.

    http://hal.inria.fr/hal-00831977
  • 9P. Bojanowski, F. Bach, I. Laptev, J. Ponce, C. Schmid, J. Sivic.

    Finding Actors and Actions in Movies, in: ICCV 2013 - IEEE International Conference on Computer Vision, Sydney, Australia, IEEE, 2013.

    http://hal.inria.fr/hal-00904991
  • 10M. Cuturi, A. d'Aspremont.

    Mean Reversion with a Variance Threshold, in: International Conference on Machine Learning, United States, October 2013, pp. 271-279.

    http://hal.inria.fr/hal-00939566
  • 11M. Eickenberg, F. Pedregosa, S. Mehdi, A. Gramfort, B. Thirion.

    Second order scattering descriptors predict fMRI activity due to visual textures, in: PRNI 2013 - 3nd International Workshop on Pattern Recognition in NeuroImaging, Philadelphia, United States, Conference Publishing Services, June 2013.

    http://hal.inria.fr/hal-00834928
  • 12F. Fogel, R. Jenatton, F. Bach, A. d'Aspremont.

    Convex Relaxations for Permutation Problems, in: Neural Information Processing Systems (NIPS) 2013, United States, August 2013.

    http://nips.cc/Conferences/2013/Program/speaker-info.php?ID=12863, http://hal.inria.fr/hal-00907528
  • 13E. Grave, G. Obozinski, F. Bach.

    Hidden Markov tree models for semantic class induction, in: CoNLL - Seventeenth Conference on Computational Natural Language Learning, Sofia, Bulgaria, 2013.

    http://hal.inria.fr/hal-00833288
  • 14P. Gronat, G. Obozinski, J. Sivic, T. Pajdla.

    Learning and calibrating per-location classifiers for visual place recognition, in: CVPR 2013 - 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, United States, June 2013.

    http://hal.inria.fr/hal-00934332
  • 15S. Jegelka, F. Bach, S. Sra.

    Reflection methods for user-friendly submodular optimization, in: NIPS 2013 - Neural Information Processing Systems, Lake Tahoe, Nevada, United States, 2013.

    http://hal.inria.fr/hal-00905258
  • 16S. Lacoste-Julien, M. Jaggi, M. Schmidt, P. Pletscher.

    Block-Coordinate Frank-Wolfe Optimization for Structural SVMs, in: ICML 2013 International Conference on Machine Learning, Atlanta, United States, 2013, pp. 53-61.

    http://hal.inria.fr/hal-00720158
  • 17S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, Z. Ghahramani.

    SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases, in: KDD 2013 - The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, United States, August 2013, pp. 572-580. [ DOI : 10.1145/2487575.2487592 ]

    http://hal.inria.fr/hal-00918671
  • 18N. Le Roux, F. Bach.

    Local Component Analysis, in: ICLR - International Conference on Learning Representations 2013, Scottsdale, United States, 2013.

    http://hal.inria.fr/inria-00617965
  • 19A. Nelakanti, C. Archambeau, J. Mairal, F. Bach, G. Bouchard.

    Structured Penalties for Log-linear Language Models, in: EMNLP - Empirical Methods in Natural Language Processing - 2013, Seattle, United States, Association for Computational Linguistics, October 2013, pp. 233-243.

    http://hal.inria.fr/hal-00904820
  • 20F. Pedregosa, M. Eickenberg, B. Thirion, A. Gramfort.

    HRF estimation improves sensitivity of fMRI encoding and decoding models, in: 3nd International Workshop on Pattern Recognition in NeuroImaging, Philadelphia, United States, May 2013.

    http://hal.inria.fr/hal-00821946
  • 21E. Richard, F. Bach, J.-P. Vert.

    Intersecting singularities for multi-structured estimation, in: ICML 2013 - 30th International Conference on Machine Learning, Atlanta, United States, 2013.

    http://hal.inria.fr/hal-00918253
  • 22G. Rigaill, T. D. Hocking, F. Bach, J.-P. Vert.

    Learning Sparse Penalties for Change-Point Detection using Max Margin Interval Regression, in: ICML 2013 - 30 th International Conference on Machine Learning, Atlanta, United States, Supported by the International Machine Learning Society (IMLS), May 2013.

    http://hal.inria.fr/hal-00824075
  • 23T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, E. Dupoux.

    Evaluating speech features with the Minimal-Pair ABX task: Analysis of the classical MFC/PLP pipeline, in: INTERSPEECH 2013 : 14th Annual Conference of the International Speech Communication Association, Lyon, France, 2013, pp. 1-5.

    http://hal.inria.fr/hal-00918599
  • 24K. S. Sesh Kumar, F. Bach.

    Convex Relaxations for Learning Bounded Treewidth Decomposable Graphs, in: International Conference on Machine Learning, Atlanta, United States, 2013, Extended version of the ICML-2013 paper..

    http://hal.inria.fr/hal-00763921

Conferences without Proceedings

  • 25E. Grave, G. Obozinski, F. Bach.

    Domain adaptation for sequence labeling using hidden Markov models, in: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks (NIPS Workshop), Lake Tahoe, United States, 2013.

    http://hal.inria.fr/hal-00918371

Scientific Books (or Scientific Book chapters)

  • 26F. Bach.

    Learning with Submodular Functions: A Convex Optimization Perspective, Foundations and Trends in Machine Learning, Now Publishers, 2013, 228 p. [ DOI : 10.1561/2200000039 ]

    http://hal.inria.fr/hal-00645271

Other Publications

References in notes
  • 38F. Bach.

    Learning with Submodular Functions: A Convex Optimization Perspective, in: ArXiv e-prints, 2011.
  • 39F. Bach, M. Jordan.

    Thin junction trees, in: Adv. NIPS, 2002.
  • 40F. Bach, M. Jordan.

    Learning spectral clustering, in: Adv. NIPS, 2003.
  • 41A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall.

    Learning a mahalanobis metric from equivalence constraints, in: Journal of Machine Learning Research, 2006, vol. 6, no 1, 937 p.
  • 42C. Bishop, et al..

    Pattern recognition and machine learning, springer New York, 2006.
  • 43D. Blatt, A. O. Hero, H. Gauchman.

    A convergent incremental gradient method with a constant step size, in: SIOPT, 2007, vol. 18, no 1, pp. 29–51.
  • 44Y. Boykov, O. Veksler, R. Zabih.

    Fast approximate energy minimization via graph cuts, in: IEEE Trans. PAMI, 2001, vol. 23, no 11, pp. 1222–1239.
  • 45L. Burget, P. Matejka, P. Schwarz, O. Glembek, J. Cernocky.

    Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System, in: IEEE Transactions on Audio, Speech and Language Processing, September 2007, vol. 15, no 7, pp. 1979-1986.
  • 46M. A. Carlin, S. Thomas, A. Jansen, H. Hermansky.

    Rapid evaluation of speech representations for spoken term discovery, in: Proceedings of Interspeech, 2011.
  • 47Y.-W. Chang, M. Collins.

    Exact Decoding of Phrase-based Translation Models through Lagrangian Relaxation, in: Proceedings of the Conference on Empirical Methods for Natural Language Processing, 2011, pp. 26–37.
  • 48A. Chechetka, C. Guestrin.

    Efficient Principled Learning of Thin Junction Trees, in: Adv. NIPS, 2007.
  • 49J. Chen, A. K. Gupta.

    Parametric Statistical Change Point Analysis, Birkhäuser, 2011.
  • 50S. Chen, R. Rosenfeld.

    A survey of smoothing techniques for ME models, in: IEEE Transactions on Speech and Audio Processing, 2000, vol. 8, no 1, pp. 37–50.
  • 51Y. Cheng.

    Mean shift, mode seeking, and clustering, in: IEEE Trans. PAMI, 1995, vol. 17, no 8, pp. 790–799.
  • 52C. I. Chow, C. N. Liu.

    Approximating discrete probability distributions with dependence trees, in: IEEE Trans. Inf. Theory, 1968, vol. 14.
  • 53F. De la Torre, T. Kanade.

    Discriminative cluster analysis, in: Proc. ICML, 2006.
  • 54F. Desobry, M. Davy, C. Doncarli.

    An online kernel change detection algorithm, in: IEEE Trans. Sig. Proc., 2005, vol. 53, no 8, pp. 2961–2974.
  • 55B. Efron, C. N. Morris.

    Stein's paradox in statistics, in: Scientific American, 1977, vol. 236, pp. 119–127.
  • 56T. Evgeniou, C. A. Micchelli, M. Pontil.

    Learning Multiple Tasks with Kernel Methods, in: Journal of Machine Learning Research, 2005, vol. 6, pp. 615–637.
  • 57P. Fousek, P. Svojanovsky, F. Grezl, H. Hermansky.

    New Nonsense Syllables Database – Analyses and Preliminary ASR Experiments, in: Proceedings of the International Conference on Spoken Language Processing (ICSLP), 2004, pp. 2004-29.
  • 58S. Fujishige.

    Submodular Functions and Optimization, Annals of Discrete Mathematics, Elsevier, 2005.
  • 59V. Gogate, W. Webb, P. Domingos.

    Learning Efficient Markov Networks, in: Adv. NIPS, 2010.
  • 60J. Goodman.

    A bit of progress in language modelling, in: Computer Speech and Language, October 2001, pp. 403–434.
  • 61J. C. Gower, G. J. S. Ross.

    Minimum spanning trees and single linkage cluster analysis, in: Applied statistics, 1969, pp. 54–64.
  • 62T. D. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, O. Delattre, F. Bach, J.-P. Vert.

    Learning smoothing models of copy number profiles using breakpoint annotations, in: HAL, archives ouvertes, 2012.
  • 63L. Jacob, F. Bach, J.-P. Vert.

    Clustered Multi-Task Learning: A Convex Formulation, in: Computing Research Repository, 2008, pp. -1–1.
  • 64W. James, C. Stein.

    Estimation with quadratic loss, in: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 1961, vol. 1, no 1961, pp. 361–379.
  • 65R. Jenatton, J. Mairal, G. Obozinski, F. Bach.

    Proximal Methods for Hierarchical Sparse Coding, in: Journal of Machine Learning Research, 2011, pp. 2297-2334.
  • 66R. Kneser, H. Ney.

    Improved backing-off for m-gram language modeling, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1995, vol. 1.
  • 67D. Koller, N. Friedman.

    Probabilistic graphical models: principles and techniques, MIT press, 2009.
  • 68V. Kolmogorov, T. Schoenemann.

    Generalized sequential tree-reweighted message passing, in: ArXiv e-prints, May 2012.
  • 69A. Krause, C. Guestrin.

    Submodularity and its Applications in Optimized Information Gathering, in: ACM Transactions on Intelligent Systems and Technology, 2011, vol. 2, no 4.
  • 70H. Lin, J. Bilmes.

    A Class of Submodular Functions for Document Summarization, in: Proc. NAACL/HLT, 2011.
  • 71D. Luenberger, Y. Ye.

    Linear and nonlinear programming, Springer Verlag, 2008.
  • 72N. A. Macmillan, C. D. Creelman.

    Detection theory: A user's guide, Lawrence Erlbaum, 2004.
  • 73F. Malvestuto.

    Approximating discrete probability distributions with decomposable models, in: IEEE Trans. Systems, Man, Cybernetics, 1991, vol. 21, no 5.
  • 74A. F. T. Martins, N. A. Smith, A. M. Q. Pedro, M. A. T. Figueiredo.

    Structured sparsity in structured prediction, in: Proceedings of the Conference on Empirical Methods for Natural Language Processing, 2011, pp. 1500–1511.
  • 75M. Narasimhan, J. Bilmes.

    PAC-learning bounded tree-width graphical models, in: Proc. UAI, 2004.
  • 76G. Nemhauser, L. Wolsey, M. Fisher.

    An analysis of approximations for maximizing submodular set functions–I, in: Mathematical Programming, 1978, vol. 14, no 1, pp. 265–294.
  • 77A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro.

    Robust stochastic approximation approach to stochastic programming, in: SIOPT, 2009, vol. 19, no 4, pp. 1574–1609.
  • 78A. Nemirovski.

    Efficient methods in convex programming, in: Lecture notes, 1994.
  • 79Y. Nesterov.

    Introductory lectures on convex optimization: A basic course, Springer, 2004.
  • 80A. Y. Ng, M. Jordan, Y. Weiss.

    On spectral clustering: Analysis and an algorithm, in: Adv. NIPS, 2002.
  • 81B. Roark, M. Saraclar, M. Collins, M. Johnson.

    Discriminative language modeling with conditional random fields and the perceptron algorithm, in: Proceedings of the Association for Computation Linguistics, 2004.
  • 82L. Saul, M. Jordan.

    Exploiting Tractable Substructures in Intractable Networks, in: Adv. NIPS, 1995.
  • 83H. D. Sherali, W. P. Adams.

    A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems, in: SIAM J. Discrete Math., 1990.
  • 84J. Shi, J. Malik.

    Normalized Cuts and Image Segmentation, in: IEEE Trans. PAMI, 1997, vol. 22, pp. 888–905.
  • 85GSVS. Sivaram, H. Hermansky.

    Sparse Multilayer Perceptron for Phoneme Recognition, in: IEEE Transactions on Audio, Speech, and Language Processing, 2012, vol. 20, no 1, pp. 23-29.
  • 86M. Solnon, S. Arlot, F. Bach.

    Multi-task Regression using Minimal Penalties, in: Journal of Machine Learning Research, September 2012, vol. 13, pp. 2773-2812.
  • 87M. Solodov.

    Incremental gradient algorithms with stepsizes bounded away from zero, in: Computational Optimization and Applications, 1998, vol. 11, no 1, pp. 23–35.
  • 88C. Stein.

    Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, in: Proceedings of the Third Berkeley symposium on mathematical statistics and probability, 1956, vol. 1, no 399, pp. 197–206.
  • 89T. Szántai, E. Kovács.

    Discovering a junction tree behind a Markov network by a greedy algorithm, in: ArXiv e-prints, April 2011.
  • 90P. Tseng.

    An incremental gradient(-projection) method with momentum term and adaptive stepsize rule, in: SIOPT, 1998, vol. 8, no 2, pp. 506-531.
  • 91I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun.

    Support Vector Machine Learning for Interdependent and Structured Output Spaces, in: Proc. ICML, 2004.
  • 92S. Vargas, P. Castells, D. Vallet.

    Explicit relevance models in intent-oriented information retrieval diversification, in: Proceedings of the 35th ACM SIGIR International Conference on Research and development in information retrieval, Portland, Oregon, USA, SIGIR'12, ACM, 2012, pp. 75-84.

    http://doi.acm.org/10.1145/2348283.2348297
  • 93M. Wainwright, M. Jordan.

    Graphical models, exponential families, and variational inference, in: Found. and Trends in Mach. Learn., 2008, vol. 1, no 1-2.
  • 94F. Wood, C. Archambeau, J. Gasthaus, J. Lancelot, Y.-W. Teh.

    A Stochastic Memoizer for Sequence Data, in: Proceedings of the 26th International Conference on Machine Learning, 2009.
  • 95E. P. Xing, A. Y. Ng, M. Jordan, S. Russell.

    Distance metric learning with applications to clustering with side-information, in: Adv. NIPS, 2002.
  • 96P. Zhao, G. Rocha, B. Yu.

    The composite absolute penalties family for grouped and hierarchical variable selection, in: The Annals of Statistics, 2009, vol. 37(6A), pp. 3468-3497.