Bibliography
Major publications by the team in recent years
-
1A. Angeli, D. Filliat, S. Doncieux, J. Meyer.
Fast and incremental method for loop-closure detection using bags of visual words, in: Robotics, IEEE Transactions on, 2008, vol. 24, no 5, pp. 1027–1037. -
2A. Baranes, P.-Y. Oudeyer.
RIAC: Robust Intrinsically Motivated Exploration and Active Learning, in: IEEE Trans. on Auto. Ment. Dev., 2009, vol. 1, no 3, pp. 155-169.
http://www.pyoudeyer.com/TAMDBaranesOudeyer09.pdf -
3A. Baranes, P.-Y. Oudeyer.
Active learning of inverse models with intrinsically motivated goal exploration in robots, in: Robotics and Autonomous Systems, 2013, vol. 61, no 1, pp. 49 - 73. [ DOI : 10.1016/j.robot.2012.05.008 ]
http://www.pyoudeyer.com/RAS-SAGG-RIAC-2012.pdf -
4J. Buchli, F. Stulp, E. Theodorou, S. Schaal.
Learning Variable Impedance Control, in: International Journal of Robotics Research, 2011, vol. 30, no 7, pp. 820-833.
http://ijr.sagepub.com/content/early/2011/03/31/0278364911402527 -
5T. Degris, O. Sigaud, P. Wuillemin.
Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems, in: Proceedings of the 23rd International Conference on Machine learning (ICML), 2006, pp. 257–264. -
6T. Degris, M. White, R. Sutton.
Off-Policy Actor-Critic, in: International Conference on Machine Learning, 2012.
http://hal.inria.fr/hal-00764021 -
7D. Filliat.
A visual bag of words method for interactive qualitative localization and mapping, in: Robotics and Automation, 2007 IEEE International Conference on, IEEE, 2007, pp. 3921–3926. -
8A. Gepperth.
Efficient online bootstrapping of sensory representations, in: Neural Networks, December 2012. [ DOI : 10.1016/j.neunet.2012.11.002 ]
http://hal.inria.fr/hal-00763660 -
9A. Gepperth, S. Rebhan, S. Hasler, J. Fritsch.
Biased competition in visual processing hierarchies: a learning approach using multiple cues, in: Cognitive Computation, March 2011, vol. 3, no 1.
http://hal.archives-ouvertes.fr/hal-00647809/en/ -
10J. Gottlieb, P.-Y. Oudeyer, M. Lopes, A. Baranes.
Information-seeking, curiosity, and attention: computational and neural mechanisms, in: Trends in Cognitive Sciences, November 2013, vol. 17, no 11, pp. 585-93. [ DOI : 10.1016/j.tics.2013.09.001 ]
http://hal.inria.fr/hal-00913646 -
11M. Lopes, T. Lang, M. Toussaint, P.-Y. Oudeyer.
Exploration in Model-based Reinforcement Learning by Empirically Estimating Learning Progress, in: Neural Information Processing Systems (NIPS), Lake Tahoe, United States, December 2012.
http://hal.inria.fr/hal-00755248 -
12M. Lopes, F. Melo, L. Montesano.
Active learning for reward estimation in inverse reinforcement learning, in: Machine Learning and Knowledge Discovery in Databases, 2009, pp. 31–46. -
13L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor.
Learning Object Affordances: From Sensory–Motor Coordination to Imitation, in: Robotics, IEEE Transactions on, 2008, vol. 24, no 1, pp. 15–26. -
14S. M. Nguyen, A. Baranes, P.-Y. Oudeyer.
Bootstrapping Intrinsically Motivated Learning with Human Demonstrations, in: proceedings of the IEEE International Conference on Development and Learning, Frankfurt, Allemagne, 2011, ERC Grant EXPLORERS 240007.
http://hal.archives-ouvertes.fr/hal-00645986 -
15P.-Y. Oudeyer, F. Kaplan, V. Hafner.
Intrinsic Motivation Systems for Autonomous Mental Development, in: IEEE Transactions on Evolutionary Computation, 2007, vol. 11, no 1, pp. 265–286.
http://www.pyoudeyer.com/ims.pdf -
16P.-Y. Oudeyer.
Self-Organization in the Evolution of Speech, Studies in the Evolution of Language, Oxford University Press, 2006. -
17P.-Y. Oudeyer.
On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development, in: IEEE Transactions on Autonomous Mental Development, 2010, vol. 2, no 1, pp. 2–16.
http://hal.inria.fr/inria-00541783/en/ -
18P. Rouanet, P.-Y. Oudeyer, F. Danieau, D. Filliat.
The Impact of Human-Robot Interfaces on the Learning of Visual Objects, in: IEEE Transactions on Robotics, January 2013.
http://hal.inria.fr/hal-00758241 -
19F. Stulp, B. Buchli, A. Ellmer, M. Mistry, E. Theodorou, S. Schaal.
Model-free Reinforcement Learning of Impedance Control in Stochastic Force Fields, in: IEEE Transactions on Autonomous Mental Development, 2012. -
20F. Stulp, A. Fedrizzi, L. Mösenlechner, M. Beetz.
Learning and Reasoning with Action-Related Places for Robust Mobile Manipulation, in: Journal of Artificial Intelligence Research (JAIR), 2012, vol. 43, pp. 1–42. -
21F. Stulp, E. Theodorou, S. Schaal.
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation, in: IEEE Transactions on Robotics, 2012, vol. 28, no 6, pp. 1360-1370.
Doctoral Dissertations and Habilitation Theses
-
22J. Grizou.
Learning from Unlabeled Interaction Frames, Université de Bordeaux, October 2014.
https://hal.inria.fr/tel-01095562 -
23M. Lapeyre.
Poppy: open-source, 3D printed and fully-modular robotic platform for science, art and education, Université de Bordeaux, November 2014.
https://hal.inria.fr/tel-01104641 -
24O. Mangin.
The Emergence of Multimodal Concepts: From Perceptual Motion Primitives to Grounded Acoustic Words, Université de Bordeaux, March 2014.
https://tel.archives-ouvertes.fr/tel-01061809
Articles in International Peer-Reviewed Journals
-
25A. Baranes, P.-Y. Oudeyer, J. Gottlieb.
The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration, in: Frontiers in Neuroscience, October 2014, vol. 8, no 317, pp. 1-9. [ DOI : 10.3389/fnins.2014.00317 ]
https://hal.inria.fr/hal-01087227 -
26T. Cederborg, P.-Y. Oudeyer.
A social learning formalism for learners trying to figure out what a teacher wants them to do, in: Paladyn Journal of Behavioral Robotics, October 2014, vol. 5, pp. 64-99. [ DOI : 10.2478/pjbr-2014-0005 ]
https://hal.inria.fr/hal-01103010 -
27X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, R. Benosman.
Asynchronous Event-Based Multikernel Algorithm for High-Speed Visual Features Tracking, in: IEEE Transactions on Neural Networks and Learning Systems, September 2014, pp. 1-12. [ DOI : 10.1109/TNNLS.2014.2352401 ]
https://hal.archives-ouvertes.fr/hal-01069808 -
28S. M. Nguyen, P.-Y. Oudeyer.
Socially Guided Intrinsic Motivation for Robot Learning of Motor Skills, in: Autonomous Robots, March 2014, vol. 36, no 3, pp. 273-294. [ DOI : 10.1007/s10514-013-9339-y ]
https://hal.inria.fr/hal-00936938 -
29P.-Y. Oudeyer.
Developmental Learning of Sensorimotor Models for Control in Robotics, in: SIAM News, September 2014, vol. 47, no 7.
https://hal.inria.fr/hal-01061633 -
30A. A. Salah, P.-Y. Oudeyer, C. Mericli, J. Ruiz-Del-Solar.
Behavior Understanding and Developmental Robotics (Guest Editorial), in: IEEE Transactions on Autonomous Mental Development, June 2014, vol. 6, no 2, pp. 77-79. [ DOI : 10.1109/TAMD.2014.2328731 ]
https://hal.inria.fr/hal-01063139
Invited Conferences
-
31O. Pietquin, M. Lopes.
Machine Learning for Interactive Systems: Challenges and Future Trends, in: WACAI - Workshop Affect, Compagnon Artificiel, Interaction, Rouen, France, June 2014.
https://hal.archives-ouvertes.fr/hal-01073947
International Conferences with Proceedings
-
32A. Armand, D. Filliat, J. Ibañez-Guzman.
Ontology-Based Context Awareness for Driving Assistance Systems, in: IV'14, United States, June 2014, pp. 1-6.
https://hal.archives-ouvertes.fr/hal-01012078 -
33A. Armand, D. Filliat, J. Ibañez-Guzmán.
A Framework for Proactive Assistance: Summary, in: System Engineering Human-Centered Intelligent Vehicles, Workshop of the IEEE International Conference on System, Man and Cybernetics, San Diego, United States, October 2014.
https://hal.archives-ouvertes.fr/hal-01072784 -
34F. Benureau, P. Fudal, P.-Y. Oudeyer.
Reusing Motor Commands to Learn Object Interaction, in: ICDL-EPIROB 2014, Genoa, Italy, October 2014.
https://hal.inria.fr/hal-01074822 -
35L.-C. Caron, D. Filliat, A. Gepperth.
Neural Network Fusion of Color, Depth and Location for Object Instance Recognition on a Mobile Robot, in: Second Workshop on Assistive Computer Vision and Robotics (ACVR), in conjunction with European Conference on Computer Vision, Zurich, Switzerland, September 2014.
https://hal.archives-ouvertes.fr/hal-01087392 -
36L.-C. Caron, Y. Song, D. Filliat, A. Gepperth.
Neural network based 2D/3D fusion for robotic object recognition, in: ESANN, Bruges, Belgium, May 2014, pp. 127 - 132.
https://hal.archives-ouvertes.fr/hal-01012090 -
37B. Clement, D. Roy, M. Lopes, P.-Y. Oudeyer.
Online Optimization and Personalization of Teaching Sequences, in: DI : Digital Intelligence - 1st International conference on digital cultures, Nantes, France, 2014.
https://hal.inria.fr/hal-01061211 -
38B. Clement, D. Roy, P.-Y. Oudeyer, M. Lopes.
Developmental Learning for Intelligent Tutoring Systems, in: IEEE ICDL-Epirob - The Fourth Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, Genoa, Italy, 2014.
https://hal.inria.fr/hal-01061195 -
39B. Clement, D. Roy, P.-Y. Oudeyer, M. Lopes.
Online Optimization of Teaching Sequences with Multi-Armed Bandits, in: 7th International Conference on Educational Data Mining, London, United Kingdom, 2014.
https://hal.inria.fr/hal-01016428 -
40G. Duceux, D. Filliat.
Unsupervised and online non-stationary obstacle discovery and modeling using a laser range finder, in: IROS 2014, United States, September 2014, 7 p.
https://hal.archives-ouvertes.fr/hal-01061406 -
41A. Gepperth.
Latency-based probabilistic information processing in a learning feedback hierarchy, in: International Joint Conference on Neural Networks (IJCNN), Beijing, China, June 2014, pp. 3031 - 3037. [ DOI : 10.1109/IJCNN.2014.6889919 ]
https://hal.inria.fr/hal-01098704 -
42A. Gepperth, M. Lefort.
Latency-Based Probabilistic Information Processing in Recurrent Neural Hierarchies, in: International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, September 2014, pp. 715 - 722. [ DOI : 10.1007/978-3-319-11179-7_90 ]
https://hal.inria.fr/hal-01098699 -
43A. Gepperth, E. Sattarov, B. Heisele, S. A. Rodriguez Florez.
Robust visual pedestrian detection by tight coupling to tracking, in: IEEE International Conference On Intelligent Transportation Systems (ITSC), Qingdao, China, October 2014, pp. 1935 - 1940. [ DOI : 10.1109/ITSC.2014.6957989 ]
https://hal.inria.fr/hal-01098703 -
44J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer, M. Lopes.
Calibration-Free BCI Based Control, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, Quebec, Canada, July 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-00984068 -
45J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer, M. Lopes.
Interactive Learning from Unlabeled Instructions, in: UAI-30th Conference on Uncertainty in Artificial Intelligence, Quebec, Canada, July 2014, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-01007689 -
46J. Grizou, M. Lopes, P.-Y. Oudeyer.
Robot Learning from Unlabelled Teaching Signals, in: HRI 2014 Pioneers Workshop, Bielefeld, Germany, March 2014.
https://hal.inria.fr/hal-00963725 -
47T. Hecht, M. Mohit, E. Sattarov, A. Gepperth.
Scene context is more than a Bayesian prior: Competitive vehicle detection with restricted detectors, in: IEEE International Symposium on Intelligent Vehicles(IV), Detroit, United States, May 2014, pp. 1358 - 1364. [ DOI : 10.1109/IVS.2014.6856542 ]
https://hal.inria.fr/hal-01098707 -
48X. Hu, S. A. Rodriguez Florez, A. Gepperth.
A Multi-Modal System for Road Detection and Segmentation, in: IEEE Intelligent Vehicles Symposium, Dearborn, Michigan, United States, June 2014, pp. 1365-1370.
https://hal.archives-ouvertes.fr/hal-01023615 -
49T. Kopinski, S. Geisler, L.-C. Caron, A. Gepperth, U. Handmann.
A real-time applicable 3D gesture recognition system for automobile HMI, in: IEEE International Conference On Intelligent Transportation Systems (ITSC), Qingdao, China, October 2014, pp. 2616 - 2622. [ DOI : 10.1109/ITSC.2014.6958109 ]
https://hal.inria.fr/hal-01098700 -
50T. Kopinski, A. Gepperth, S. Geisler, U. Handmann.
Neural Network Based Data Fusion for Hand Pose Recognition with Multiple ToF Sensors, in: International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, September 2014, pp. 233 - 240. [ DOI : 10.1007/978-3-319-11179-7_30 ]
https://hal.inria.fr/hal-01098697 -
51T. Kopinski, D. Malysiak, A. Gepperth, U. Handmann.
Time-of-Flight based multi-sensor fusion strategies for hand gesture recognition, in: IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, November 2014.
https://hal.inria.fr/hal-01098695 -
52A. Kumar Pandey, R. Gelin, R. Alami, R. Viry, A. Buendia, R. Meertens, M. Chetouani, L. Devillers, M. Tahon, D. Filliat, Y. Grenier, M. Maazaoui, A. Kheddar, F. Lerasle, L. Fitte Duval.
Romeo2 Project: Humanoid Robot Assistant and Companion for Everyday Life: I. Situation Assessment for Social Intelligence, in: International Workshop on Artificial Intelligence and Cognition, 2nd Edition, Torino, Italy, Proceedings of the Second International Workshop on Artificial Intelligence and Cognition (AIC 2014), CEUR Workshop Proceedings (CEUR-WS.org), November 2014, vol. 1315, pp. 140-147.
https://hal.archives-ouvertes.fr/hal-01096094 -
53M. Lapeyre, S. N'Guyen, A. Le Falher, P.-Y. Oudeyer.
Rapid morphological exploration with the Poppy humanoid platform, in: 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, November 2014, 8 p.
https://hal.inria.fr/hal-01096344 -
54M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, P.-Y. Oudeyer.
Poppy Project: Open-Source Fabrication of 3D Printed Humanoid Robot for Science, Education and Art, in: Digital Intelligence 2014, Nantes, France, September 2014, 6 p.
https://hal.inria.fr/hal-01096338 -
55M. Lefort, A. Gepperth.
Discrimination of visual pedestrians data by combining projection and prediction learning, in: ESANN - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, April 2014.
https://hal.inria.fr/hal-01061654 -
56M. Lefort, A. Gepperth.
PROPRE: PROjection and PREdiction for multimodal correlations learning. An application to pedestrians visual data discrimination, in: IJCNN - International Joint Conference on Neural Networks, Pékin, China, July 2014.
https://hal.inria.fr/hal-01061662 -
57M. Lefort, T. Kopinski, A. Gepperth.
Multimodal space representation driven by self-evaluation of predictability, in: ICDL-EPIROB - The fourth joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, Gênes, Italy, October 2014.
https://hal.inria.fr/hal-01061668 -
58B. Miard, P. Rouanet, J. Grizou, M. Lopes, J. Gottlieb, A. Baranes, P.-Y. Oudeyer.
A new experimental setup to study the structure of curiosity-driven exploration in humans, in: ICDL-EPIROB 2014, Genoa, Italy, October 2014.
https://hal.inria.fr/hal-01061682 -
59C. Moulin-Frier, P.-Y. Oudeyer.
Learning how to reach various goals by autonomous interaction with the environment: unification and comparison of exploration strategies, in: 1st Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM2013), Princeton University, New Jersey, Princeton, United States, October 2014.
https://hal.inria.fr/hal-00922537 -
60C. Moulin-Frier, P. Rouanet, P.-Y. Oudeyer.
Explauto: an open-source Python library to study autonomous exploration in developmental robotics, in: ICDL-Epirob - International Conference on Development and Learning, Epirob, Genoa, Italy, October 2014.
https://hal.inria.fr/hal-01061708 -
61T. Munzer, F. Stulp, O. Sigaud.
Non-linear regression algorithms for motor skill acquisition: a comparison, in: 9èmes Journées Francophones de Planification, Décision et Apprentissage, Liège, Belgium, May 2014.
https://hal.archives-ouvertes.fr/hal-01090848 -
62E. Sattarov, S. A. Rodriguez Florez, A. Gepperth, R. Reynaud.
Context-based vector fields for multi-object tracking in application to road traffic, in: IEEE International Conference On Intelligent Transportation Systems (ITSC), Qingdao, China, October 2014, pp. 1179 - 1185. [ DOI : 10.1109/ITSC.2014.6957847 ]
https://hal.inria.fr/hal-01098701 -
63D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller.
Deterministic Policy Gradient Algorithms, in: ICML, Beijing, China, June 2014.
https://hal.inria.fr/hal-00938992 -
64F. Stulp, L. Herlant, A. Hoarau, G. Raiola.
Simultaneous On-line Discovery and Improvement of Robotic Skill Options, in: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Chicago, United States, 2014. [ DOI : 10.1109/IROS.2014.6942741 ]
https://hal.archives-ouvertes.fr/hal-01089097 -
65N. Torres Alberto, M. Mistry, F. Stulp.
Computed Torque Control with Variable Gains through Gaussian Process Regression, in: IEEE International Conference on Humanoid Robots, Madrid, Spain, 2014.
https://hal.archives-ouvertes.fr/hal-01089099
Conferences without Proceedings
-
66A.-L. Vollmer, J. Grizou, M. Lopes, K. Rohlfing, P.-Y. Oudeyer.
Studying the Co-Construction of Interaction Protocols in Collaborative Tasks with Humans, in: The Fourth Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, Genoa, Italy, October 2014.
https://hal.archives-ouvertes.fr/hal-01090934
Scientific Books (or Scientific Book chapters)
-
67J.-L. Schwartz, C. Moulin-Frier, P.-Y. Oudeyer, K. De Jong.
On the cognitive nature of speech sound systems, Journal of Phonetics, 2015, 120 p.
https://hal.archives-ouvertes.fr/hal-01073668
Scientific Popularization
-
68P.-Y. Oudeyer.
What do we learn about development from baby robots?, January 2015, Article explaining to a wide audience that building and experimenting with robots modeling the growing infant brain and body is crucial for understanding pattern formation in development viewed as a complex dynamical system.
https://hal.inria.fr/hal-01107240
Other Publications
-
69B. Clement, D. Roy, P.-Y. Oudeyer, M. Lopes.
Optimisation et Personnalisation automatiques des parcours d’apprentissage dans les Systèmes Tutoriels Intelligents, November 2014, TICE.
https://hal.inria.fr/hal-01090900 -
70M. Lopes, L. Montesano.
Active Learning for Autonomous Intelligent Agents: Exploration, Curiosity, and Interaction, March 2014.
https://hal.inria.fr/hal-00957930 -
71C. Moulin-Frier, J. Brochard, F. Stulp, P.-Y. Oudeyer.
Emergent maturation from stochastic optimization in vocal development, November 2014.
https://hal.archives-ouvertes.fr/hal-01100042
-
72L. Steels, R. Brooks (editors)
The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995. -
73B. Argall, S. Chernova, M. Veloso.
A Survey of Robot Learning from Demonstration, in: Robotics and Autonomous Systems, 2009, vol. 57, no 5, pp. 469–483. -
74M. Asada, S. Noda, S. Tawaratsumida, K. Hosoda.
Purposive Behavior Acquisition On A Real Robot By Vision-Based Reinforcement Learning, in: Machine Learning, 1996, vol. 23, pp. 279-303. -
75A. Barto, S. Singh, N. Chentanez.
Intrinsically Motivated Learning of Hierarchical Collections of Skills, in: Proceedings of the 3rd International Conference on Development and Learning (ICDL 2004), Salk Institute, San Diego, 2004. -
76D. Berlyne.
Conflict, Arousal and Curiosity, McGraw-Hill, 1960. -
77C. Breazeal.
Designing sociable robots, The MIT Press, 2004. -
78R. Brooks, C. Breazeal, R. Irie, C. C. Kemp, B. Scassellati, M. Williamson.
Alternative essences of intelligence, in: Proceedings of 15th National Conference on Artificial Intelligence (AAAI-98, AAAI Press, 1998, pp. 961–968. -
79A. Clark.
Mindware: An Introduction to the Philosophy of Cognitive Science, Oxford University Press, 2001. -
80D. Cohn, Z. Ghahramani, M. Jordan.
Active learning with statistical models, in: Journal of artificial intelligence research, 1996, vol. 4, pp. 129–145. -
81W. Croft, D. Cruse.
Cognitive Linguistics, Cambridge Textbooks in Linguistics, Cambridge University Press, 2004. -
82M. Csikszenthmihalyi.
Flow-the psychology of optimal experience, Harper Perennial, 1991. -
83P. Dayan, W. Belleine.
Reward, motivation and reinforcement learning, in: Neuron, 2002, vol. 36, pp. 285–298. -
84E. Deci, R. Ryan.
Intrinsic Motivation and Self-Determination in Human Behavior, Plenum Press, 1985. -
85J. Elman.
Learning and development in neural networks: The importance of starting small, in: Cognition, 1993, vol. 48, pp. 71–99. -
86D. Filliat, E. Battesti, S. Bazeille, G. Duceux, A. Gepperth, L. Harrath, I. Jebari, R. Pereira, A. Tapus, C. Meyer, S.-H. Ieng, R. Benosman, E. Cizeron, J.-C. Mamanna, B. Pothier.
RGBD object recognition and visual texture classification for indoor semantic mapping, in: Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on, United States, 2012, pp. 127 - 132.
http://hal.inria.fr/hal-00755295 -
87S. Harnad.
The symbol grounding problem, in: Physica D, 1990, vol. 40, pp. 335–346. -
88M. Hasenjager, H. Ritter.
Active learning in neural networks, Physica-Verlag GmbH, Heidelberg, Germany, Germany, 2002, pp. 137–169. -
89J. Haugeland.
Artificial Intelligence: the very idea, The MIT Press, Cambridge, MA, USA, 1985. -
90J.-C. Horvitz.
Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events, in: Neuroscience, 2000, vol. 96, no 4, pp. 651-656. -
91X. Huang, J. Weng.
Novelty and reinforcement learning in the value system of developmental robots, in: Proceedings of the 2nd international workshop on Epigenetic Robotics : Modeling cognitive development in robotic systems, C. Prince, Y. Demiris, Y. Marom, H. Kozima, C. Balkenius (editors), Lund University Cognitive Studies 94, 2002, pp. 47–55. -
92S. Ivaldi, N. Lyubova, D. Gérardeaux-Viret, A. Droniou, S. Anzalone, M. Chetouani, D. Filliat, O. Sigaud.
Perception and human interaction for developmental learning of objects and affordances, in: Proc. of the 12th IEEE-RAS International Conference on Humanoid Robots - HUMANOIDS, Japan, 2012, forthcoming.
http://hal.inria.fr/hal-00755297 -
93M. Johnson.
Developmental Cognitive Neuroscience, 2nd, Blackwell publishing, 2005. -
94W. B. Knox, P. Stone.
Combining manual feedback with subsequent MDP reward signals for reinforcement learning, in: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS'10), 2010, pp. 5–12. -
95M. Lopes, T. Cederborg, P.-Y. Oudeyer.
Simultaneous Acquisition of Task and Feedback Models, in: Development and Learning (ICDL), 2011 IEEE International Conference on, Germany, 2011, pp. 1 - 7. [ DOI : 10.1109/DEVLRN.2011.6037359 ]
http://hal.inria.fr/hal-00636166/en -
96M. Lungarella, G. Metta, R. Pfeifer, G. Sandini.
Developmental Robotics: A Survey, in: Connection Science, 2003, vol. 15, no 4, pp. 151-190. -
97N. Lyubova, D. Filliat.
Developmental Approach for Interactive Object Discovery, in: Neural Networks (IJCNN), The 2012 International Joint Conference on, Australia, 2012, pp. 1-7.
http://hal.inria.fr/hal-00755298 -
98O. Mangin, P.-Y. Oudeyer.
Learning Semantic Components from Subsymbolic Multimodal Perception, in: Joint IEEE International Conference on Development and Learning an on Epigenetic Robotics (ICDL-EpiRob), Osaka, Japan, IEEE, August 2013.
https://hal.inria.fr/hal-00842453 -
99J. Marshall, D. Blank, L. Meeden.
An Emergent Framework for Self-Motivation in Developmental Robotics, in: Proceedings of the 3rd International Conference on Development and Learning (ICDL 2004), Salk Institute, San Diego, 2004. -
100M. Mason, M. Lopes.
Robot Self-Initiative and Personalization by Learning through Repeated Interactions, in: 6th ACM/IEEE International Conference on Human-Robot, Switzerland, 2011. [ DOI : 10.1145/1957656.1957814 ]
http://hal.inria.fr/hal-00636164/en -
101P. Miller.
Theories of developmental psychology, 4th, New York: Worth, 2001. -
102C. Moulin-Frier, P.-Y. Oudeyer.
Exploration strategies in developmental robotics: a unified probabilistic framework, in: ICDL-Epirob - International Conference on Development and Learning, Epirob, Osaka, Japan, August 2013.
https://hal.inria.fr/hal-00860641 -
103S. M. Nguyen, A. Baranes, P.-Y. Oudeyer.
Bootstrapping Intrinsically Motivated Learning with Human Demonstrations, in: IEEE International Conference on Development and Learning, Frankfurt, Germany, 2011.
http://hal.inria.fr/hal-00645986/en -
104S. M. Nguyen, A. Baranes, P.-Y. Oudeyer.
Constraining the Size Growth of the Task Space with Socially Guided Intrinsic Motivation using Demonstrations., in: IJCAI Workshop on Agents Learning Interactively from Human Teachers (ALIHT), Barcelona, Spain, 2011.
http://hal.inria.fr/hal-00645995/en -
105P.-Y. Oudeyer, F. Kaplan.
Intelligent adaptive curiosity: a source of self-development, in: Proceedings of the 4th International Workshop on Epigenetic Robotics, L. Berthouze, H. Kozima, C. Prince, G. Sandini, G. Stojanov, G. Metta, C. Balkenius (editors), Lund University Cognitive Studies, 2004, vol. 117, pp. 127–130. -
106P.-Y. Oudeyer, F. Kaplan.
What is intrinsic motivation? A typology of computational approaches, in: Frontiers in Neurorobotics, 2007, vol. 1, no 1. -
107P.-Y. Oudeyer.
Sur les interactions entre la robotique et les sciences de l'esprit et du comportement, in: Informatique et Sciences Cognitives : influences ou confluences ?, C. Garbay, D. Kaiser (editors), Presses Universitaires de France, 2009.
http://hal.inria.fr/inria-00420309/en/ -
108P.-Y. Oudeyer.
L'auto-organisation dans l'évolution de la parole, in: Parole et Musique: Aux origines du dialogue humain, Colloque annuel du Collège de France, S. Dehaene, C. Petit (editors), Odile Jacob, 2009, pp. 83-112.
http://hal.inria.fr/inria-00446908/en/ -
109A. Revel, J. Nadel.
How to build an imitator?, in: Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions, K. Dautenhahn, C. Nehaniv (editors), Cambridge University Press, 2004. -
110T. Schatz, P.-Y. Oudeyer.
Learning motor dependent Crutchfield's information distance to anticipate changes in the topology of sensory body maps, in: IEEE International Conference on Learning and Development, Chine Shangai, 2009.
http://hal.inria.fr/inria-00420186/en/ -
111M. Schembri, M. Mirolli, G. Baldassarre.
Evolving internal reinforcers for an intrinsically motivated reinforcement-learning robot, in: IEEE 6th International Conference on Development and Learning, 2007. ICDL 2007., July 2007, pp. 282-287.
http://dx.doi.org/10.1109/DEVLRN.2007.4354052 -
112J. Schmidhuber.
Curious Model-Building Control Systems, in: Proceedings of the International Joint Conference on Neural Networks, Singapore, IEEE press, 1991, vol. 2, pp. 1458–1463. -
113W. Schultz, P. Dayan, P. Montague.
A neural substrate of prediction and reward, in: Science, 1997, vol. 275, pp. 1593-1599. -
114E. Thelen, L. B. Smith.
A dynamic systems approach to the development of cognition and action, MIT Press, Cambridge, MA, 1994. -
115A. L. Thomaz, C. Breazeal.
Teachable robots: Understanding human teaching behavior to build more effective robot learners, in: Artificial Intelligence Journal, 2008, vol. 172, pp. 716-737. -
116A. Turing.
Computing machinery and intelligence, in: Mind, 1950, vol. 59, pp. 433-460. -
117F. Varela, E. Thompson, E. Rosch.
The embodied mind : Cognitive science and human experience, MIT Press, Cambridge, MA, 1991. -
118J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, E. Thelen.
Autonomous mental development by robots and animals, in: Science, 2001, vol. 291, pp. 599-600.