EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. Alicandro, M. Cicalese, A. Gloria.

    Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
  • 2A. Gloria.

    Reduction of the resonance error - Part 1: Approximation of homogenized coefficients, in: Math. Models Methods Appl. Sci., 2011, vol. 21, no 8, pp. 1601–1630.
  • 3A. Gloria.

    Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
  • 4A. Gloria, F. Otto.

    An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
  • 5A. Gloria, F. Otto.

    An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
  • 6A. Gloria, M. Penrose.

    Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

  • 7M. Bessemoulin-Chatard, C. Chainais-Hillairet, F. Filbet.

    On discrete functional inequalities for some finite volume schemes, in: IMA Journal of Numerical Analysis, July 2014, pp. 10-32. [ DOI : 10.1093/imanum/dru032 ]

    https://hal.archives-ouvertes.fr/hal-00672591
  • 8M. Bessemoulin-Chatard, C. Chainais-Hillairet, M.-H. Vignal.

    Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit, in: SIAM Journal on Numerical Analysis, 2014, vol. 52, no 4, pp. 1666–1691.

    https://hal.archives-ouvertes.fr/hal-00801912
  • 9C.-H. Bruneau, E. Creusé, P. Gilliéron, I. Mortazavi.

    Effect of the vortex dynamics on the drag coefficient of a square back Ahmed body : Application to the flow control, in: European Journal of Mechanics - B/Fluids, 2014, pp. 1-11.

    https://hal.archives-ouvertes.fr/hal-01091585
  • 10C. Chainais-Hillairet, S. Krell, A. Mouton.

    Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, in: Numerical Methods for Partial Differential Equations, August 2014, 38 p. [ DOI : 10.1002/num.21913 ]

    https://hal.archives-ouvertes.fr/hal-00929823
  • 11D. Cohen, G. Dujardin.

    Energy-preserving integrators for stochastic Poisson systems, in: Communications in Mathematical Sciences, 2014, vol. 12, no 8, 17 p.

    https://hal.archives-ouvertes.fr/hal-00907890
  • 12A.- C. Egloffe, A. Gloria, J.-C. Mourrat, T. N. Nguyen.

    Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth, in: IMA Journal of Numerical Analysis, 2014, 44 p. [ DOI : 10.1093/imanum/dru010 ]

    https://hal.inria.fr/hal-00749667
  • 13A. Gloria.

    When are increment-stationary random point sets stationary?, in: Electronic Communications in Probability, May 2014, vol. 19, no 30, pp. 1-14. [ DOI : 10.1214/ECP.v19-3288 ]

    https://hal.inria.fr/hal-00863414
  • 14A. Gloria, Z. Habibi.

    Reduction of the resonance error in numerical homogenisation II: correctors and extrapolation, in: Foundations of Computational Mathematics, 2015, 67 p.

    https://hal.inria.fr/hal-00933234
  • 15A. Gloria, P. Le Tallec, M. Vidrascu.

    Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mechanics and Thermodynamics, 2014, vol. 26, no 1, pp. 1–31. [ DOI : 10.1007/s00161-012-0281-6 ]

    https://hal.archives-ouvertes.fr/hal-00673406
  • 16A. Gloria, S. Neukamm, F. Otto.

    An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, January 2014, vol. 48, no 2, pp. 325-346. [ DOI : 10.1051/m2an/2013110 ]

    https://hal.inria.fr/hal-00863488
  • 17A. Gloria, S. Neukamm, F. Otto.

    Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, in: Inventiones Mathematicae, 2015, 61 p. [ DOI : 10.1007/s00222-014-0518-z ]

    https://hal.archives-ouvertes.fr/hal-01093405
  • 18V. Gudmundsson, S. Hauksson, A. Johnsen, G. Reinisch, A. Manolescu, C. Besse, G. Dujardin.

    Excitation of radial collective modes in a quantum dot: Beyond linear response, in: Annalen der Physik, 2014, vol. 526, no 5-6, 12 pages with 16 included pdf figures. [ DOI : 10.1002/andp.201400048 ]

    https://hal.archives-ouvertes.fr/hal-00907845
  • 19I. Lacroix-Violet, C. Chainais-Hillairet.

    On the existence of solutions for a drift-diffusion system arising in corrosion modelling, in: Discrete and Continuous Dynamical Systems - Series B, 2015, vol. Volume 20, no Issue 1, 15 p.

    https://hal.archives-ouvertes.fr/hal-00764239
  • 20Z. Tang, P. Dular, Y. Le Menach, E. Creusé, F. Piriou.

    Comparison of residual and hierarchical finite element error estimators in eddy current problems, in: IEEE Transactions on Magnetics, 2014, vol. 50, no 2, 7012304.

    https://hal.archives-ouvertes.fr/hal-01091577

Other Publications

References in notes
  • 35G. Agrawal.

    Nonlinear fiber optics, Academic Press, 2006.
  • 36B. Aguer, S. De Bièvre.

    On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors, in: J. Phys. A, 2010, vol. 43, 474001.
  • 37T. Arbogast.

    Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical treatment of multiphase flows in porous media (Beijing, 1999), Berlin, Lecture Notes in Phys., Springer, 2000, vol. 552, pp. 35–49.
  • 38S. N. Armstrong, C. K. Smart.

    Quantitative stochastic homogenization of convex integral functionals, in: ArXiv e-prints, June 2014.
  • 39M. Avellaneda, F.-H. Lin.

    Compactness methods in the theory of homogenization, in: Comm. Pure and Applied Math., 1987, vol. 40, no 6, pp. 803–847.

    http://dx.doi.org/10.1002/cpa.3160400607
  • 40J. M. Ball.

    Some open problems in elasticity, in: Geometry, mechanics, and dynamics, New York, Springer, 2002, pp. 3–59.
  • 41A. Braides.

    Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
  • 42G. Dal Maso, L. Modica.

    Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
  • 43S. De Bièvre, G. Forni.

    Transport properties of kicked and quasiperiodic Hamiltonians, in: J. Statist. Phys., 2010, vol. 90, no 5-6, pp. 1201–1223.
  • 44M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.

    Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
  • 45Y. Efendiev, T. Hou.

    Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009, vol. 4, Theory and applications.
  • 46P. Flory.

    Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
  • 47J.-C. Garreau, B. Vermersch.

    Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
  • 48A. Gloria, J.-C. Mourrat.

    Spectral measure and approximation of homogenized coefficients, in: Probab. Theory. Relat. Fields, 2012, vol. 154, no 1, pp. 287-326.
  • 49T. Hou, X. Wu.

    A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, in: J. Comput. Phys., 1997, vol. 134, pp. 169–189.
  • 50S. Kozlov.

    The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
  • 51D. Marahrens, F. Otto.

    Annealed estimates on the Green's function, 2013, MPI Preprint 69/2012.
  • 52S. Müller.

    Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
  • 53A. Naddaf, T. Spencer.

    Estimates on the variance of some homogenization problems, Preprint, 1998.
  • 54G. Papanicolaou, S. Varadhan.

    Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
  • 55C. Sulem, P.-L. Sulem.

    The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
  • 56L. Treloar.

    The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
  • 57E. Weinan.

    Principles of multiscale modeling, Cambridge University Press, Cambridge, 2011, xviii+466 p.