Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fezoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.

    Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, 2013, vol. 11, no 4, pp. 291–302.
  • 4V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 5C. Durochat, S. Lanteri, R. Léger.

    A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, 2013, vol. 27, pp. 614-625.
  • 6C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 7M. El Bouajaji, V. Dolean, M.J. Gander, S. Lanteri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071.
  • 8M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 9V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.
  • 10H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 11H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 12H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 13L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 14S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 15L. Li, S. Lanteri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138.
  • 16L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 17R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.

    A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: J. Comp. Appl. Math., 2014, vol. 270, pp. 330–342.
  • 18L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 19L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 20F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 21J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

Publications of the year

Articles in International Peer-Reviewed Journals

  • 22D. Chiron, C. Scheid.

    Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two, in: Journal of Nonlinear Science, September 2015. [ DOI : 10.1007/s00332-015-9273-6 ]

  • 23S. Delcourte, N. Glinsky.

    Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 42 p, Accepté pour publication.

  • 24V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, Z. Peng.

    Effective transmission conditions for domain decomposition methods applied to the time-harmonic Curl-Curl Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 280. [ DOI : 10.1016/j.jcp.2014.09.024 ]

  • 25M. El Bouajaji, V. Dolean, M. J. Gander, S. Lanteri, R. Perrussel.

    Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell's equations, in: Electronic Transactions on Numerical Analysis (ETNA), 2015, vol. 44.

  • 26Y.-X. He, L. Li, S. Lanteri, T.-Z. Huang.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method, in: Computer Physics Communications, March 2016, vol. 200. [ DOI : 10.1016/j.cpc.2015.11.011 ]

  • 27G. Jay, S. Lanteri, O. Nicole, R. Perrussel.

    Stabilization in relation to wavenumber in HDG methods, in: Advanced Modeling and Simulation in Engineering Sciences, June 2015, vol. 2, no 13. [ DOI : 10.1186/s40323-015-0032-x ]

  • 28D. Mercerat, N. Glinsky.

    A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heterogeneous media, in: Geophysical Journal International, 2015, 20 p, accepté pour publication.

  • 29J. Viquerat, C. Scheid.

    A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light–matter interactions, in: Journal of Computational and Applied Mathematics, March 2015, forthcoming. [ DOI : 10.1016/j.cam.2015.03.028 ]


International Conferences with Proceedings

  • 30S. Lanteri, C. Scheid, J. Viquerat.

    Numerical modeling of light/matter interaction at the nanoscale with a high order finite element type time-domain solver, in: 36th PIERS (Progress In Electromagnetics Research Symposium), Prague, Czech Republic, July 2015.


Conferences without Proceedings

  • 31H. Barucq, L. Boillot, M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Discontinuous Galerkin Approximations for Seismic Wave Propagation in a HPC Framework, in: Platform for Advanced Scientific Computing Conference (PASC 15), Zurich, Switzerland, June 2015.

  • 32M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Modeling of elastic Helmholtz equations by hybridizable discontinuous Galerkin method (HDG) for geophysical applications, in: 5th workshop France-Brazil HOSCAR, Nice, France, September 2015.

  • 33M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Modelling of seismic waves propagation in harmonic domain by hybridizable discontinuous Galerkin method (HDG), in: Workshop GEAGAMM, Pau, France, May 2015.

  • 34M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Performance Assessment on Hybridizable Dg Approximations for the Elastic Wave Equation in Frequency Domain, in: SIAM Conference on Mathematical and Computational Issues in the Geosciences, Stanford, United States, June 2015.

  • 35M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain, in: Workshop Oil & Gas Rice 2015, Houston, Texas, United States, March 2015.

  • 36S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.

    Multiscale hybrid methods for time-domain electromagnetics, in: ADMOS 2015, Nantes, France, June 2015.

  • 37S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.

    A multiscale hybrid-mixed method for the Maxwell equations in the time domain, in: WONAPDE 2016, Concepción, Chile, Universidad de Concepción, Chile, January 2016.

  • 38S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    MHM methods for time dependent propagation of electromagnetics waves, in: PANACM 2015, Buenos Aires, Argentina, April 2015.

  • 39C. Scheid.

    Numerical computation of travelling waves for the Nonlinear Schrödinger equation in dimension 2, in: SciCADE 2015, Potsdam, Germany, September 2015.

  • 40C. Scheid.

    Numerical study of dispersive models for nanophotonics, in: Waves 2015, Karlsruhe, Germany, July 2015.


Scientific Books (or Scientific Book chapters)

  • 41S. Descombes, M. Duarte, M. Massot.

    Operator splitting methods with error estimator and adaptive time-stepping. Application to the simulation of combustion phenomena, in: operator splitting and alternating direction methods, R. Glowinski, S. Osher, W. Yin (editors), August 2015, pp. 1-13.

  • 42S. Lanteri, R. Léger, C. Scheid, J. Viquerat, T. Cabel, G. Hautreux.

    Hybrid MIMD/SIMD High Order DGTD Solver for the Numerical Modeling of Light/Matter Interaction on the Nanoscale, PRACE, March 2015.


Internal Reports

  • 43S. Descombes, S. Lanteri, L. Moya.

    Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, Université Nice Sophia Antipolis ; CNRS, 2015.

  • 44L. Fezoui, S. Lanteri.

    Discontinuous Galerkin methods for the numerical solution of the nonlinear Maxwell equations in 1d, Inria, January 2015, no RR-8678.

  • 45N. Schmitt, C. Scheid, S. Lanteri, J. Viquerat, A. Moreau.

    A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, Inria, May 2015, no RR-8726, 73 p.


Other Publications

  • 46S. Descombes, M. Duarte, T. Dumont, T. Guillet, V. Louvet, M. Massot.

    Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures, November 2015, working paper or preprint.

  • 47S. Descombes, S. Lanteri, L. Moya.

    Temporal convergence analysis of a locally implicit discontinuous galerkin time domain method for electromagnetic wave propagation in dispersive media, December 2015, working paper or preprint.

  • 48R. Léger, D. Alvarez Mallon, A. Duran, S. Lanteri.

    Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform, October 2015, working paper or preprint.

References in notes
  • 49B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 50B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 51C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 52K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 53K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 54B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 55A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 56J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 57J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 58X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 59J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 60A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 61J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 62K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 63Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.