Bibliography
Major publications by the team in recent years
-
1G. Biau, F. Cérou, A. Guyader.
On the rate of convergence of the bagged nearest neighbor estimate, in: Journal of Machine Learning Research, February 2010, vol. 11, pp. 687–712.
http://jmlr.csail.mit.edu/papers/v11/biau10a.html -
2G. Biau, F. Cérou, A. Guyader.
On the rate of convergence of the functional –nearest neighbor estimates, in: IEEE Transactions on Information Theory, April 2010, vol. IT–56, no 4, pp. 2034–2040.
http://dx.doi.org/10.1109/TIT.2010.2040857 -
3G. Biau, F. Cérou, A. Guyader.
New insights into approximate Bayesian computation, in: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, February 2015, vol. 51, no 1, pp. 376–403.
http://dx.doi.org/10.1214/13-AIHP590 -
4F. Cérou, A. Guyader.
Nearest neighbor classification in infinite dimension, in: ESAIM : Probability and Statistics, 2006, vol. 10, pp. 340–355.
http://dx.doi.org/10.1051/ps:2006014 -
5F. Cérou, A. Guyader.
Adaptive multilevel splitting for rare event analysis, in: Stochastic Analysis and Applications, March 2007, vol. 25, no 2, pp. 417–443.
http://dx.doi.org/10.1080/07362990601139628 -
6F. Cérou, P. Del Moral, F. Le Gland, P. Lezaud.
Genetic genealogical models in rare event analysis, in: ALEA, Latin American Journal of Probability and Mathematical Statistics, 2006, vol. 1, pp. 181–203, Paper 01–08. -
7A. Guyader, N. Hengartner, É. Matzner–Løber.
Simulation and estimation of extreme quantiles and extreme probabilities, in: Applied Mathematics & Optimization, October 2011, vol. 64, no 2, pp. 171–196.
http://dx.doi.org/10.1007/s00245-011-9135-z -
8F. Le Gland, V. Monbet, V.–D. Tran.
Large sample asymptotics for the ensemble Kalman filter, in: The Oxford Handbook of Nonlinear Filtering, Oxford, D. O. Crisan, B. L. Rozovskii (editors), Oxford University Press, 2011, chap. 22, pp. 598–631. -
9F. Le Gland, N. Oudjane.
A sequential algorithm that keeps the particle system alive, in: Stochastic Hybrid Systems : Theory and Safety Critical Applications, Berlin, H. A. P. Blom, J. Lygeros (editors), Lecture Notes in Control and Information Sciences, Springer–Verlag, 2006, no 337, pp. 351–389.
http://dx.doi.org/10.1007/11587392_11 -
10C. Musso, N. Oudjane, F. Le Gland.
Improving regularized particle filters, in: Sequential Monte Carlo Methods in Practice, New York, A. Doucet, N. de Freitas, N. J. Gordon (editors), Statistics for Engineering and Information Science, Springer–Verlag, 2001, chap. 12, pp. 247–271.
http://dx.doi.org/10.1007/978-1-4757-3437-9_12
Doctoral Dissertations and Habilitation Theses
-
11A. Lepoutre.
Detection and tracking in Track-Before-Detect context using particle filtering, Université de Rennes 1, October 2016.
https://hal.inria.fr/tel-01423238
Articles in International Peer-Reviewed Journals
-
12J.-D. Albert, V. Monbet, A. Jolivet-Gougeon, N. Fatih, M. Le Corvec, M. Seck, F. Charpentier, G. Coiffier, C. Boussard-Plédel, B. Bureau, P. Guggenbuhl, O. Loréal.
A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy, in: Joint Bone Spine, 2016, vol. 83, no 3, pp. 318-323. [ DOI : 10.1016/j.jbspin.2015.05.009 ]
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01243032 -
13J. Bessac, P. Ailliot, J. Cattiaux, V. Monbet.
Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic, in: Advances in Statistical Climatology, Meteorology and Oceanography, 2016, vol. 2, no 1, pp. 1-16. [ DOI : 10.5194/ascmo-2-1-2016 ]
https://hal.archives-ouvertes.fr/hal-01250353 -
14P. Bui Quang, C. Musso, F. Le Gland.
Particle filtering and the Laplace method for target tracking, in: IEEE Transactions on Aerospace and Electronic Systems, February 2016, vol. 52, no 1, pp. 350-366. [ DOI : 10.1109/TAES.2015.140419 ]
https://hal.archives-ouvertes.fr/hal-01314343 -
15F. Cérou, A. Guyader.
Fluctuation analysis of adaptive multilevel splitting, in: The Annals of Applied Probability : an official journal of the institute of mathematical statistics, December 2016, vol. 26, no 6, pp. 3319-3380. [ DOI : 10.1214/16-AAP1177 ]
https://hal.archives-ouvertes.fr/hal-01417241 -
16P. Héas, A. Drémeau, C. Herzet.
An Efficient Algorithm for Video Super-Resolution Based On a Sequential Model, in: SIAM Journal on Imaging Sciences, 2016, vol. 9, no 2, pp. 537-572, 37 pages. [ DOI : 10.1137/15M1023956 ]
https://hal.inria.fr/hal-01158551 -
17D. Jacquemart, J. Morio.
Adaptive interacting particle system algorithm for aircraft conflict probability estimation, in: Aerospace Science and Technology, June 2016, vol. 55, pp. 431-438. [ DOI : 10.1016/j.ast.2016.05.027 ]
https://hal.archives-ouvertes.fr/hal-01404144 -
18M. Le Corvec, F. Charpentier, A. Kachenoura, S. Bensaid, S. Henno, E. Bardou-Jacquet, B. Turlin, V. Monbet, L. Senhadji, O. Loréal, O. Sire, J. F. Betagne, H. Tariel, F. Lainé.
Fast and Non-Invasive Medical Diagnostic Using Mid Infrared Sensor: The AMNIFIR Project, in: IRBM, 2016, vol. 37, no 2, pp. 116-123. [ DOI : 10.1016/j.irbm.2016.03.003 ]
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01296780 -
19A. Lepoutre, O. Rabaste, F. Le Gland.
Multitarget likelihood for Track-Before-Detect applications with amplitude fluctuations, in: IEEE Transactions on Aerospace and Electronic Systems, June 2016, vol. 52, no 3, pp. 1089-1107. [ DOI : 10.1109/TAES.2016.140909 ]
https://hal.archives-ouvertes.fr/hal-01393453 -
20V. Monbet, P. Ailliot.
Sparse vector Markov switching autoregressive models. Application to multivariate time series of temperature, in: Computational Statistics and Data Analysis, 2017, vol. 108, pp. 40-51. [ DOI : 10.1016/j.csda.2016.10.023 ]
https://hal.archives-ouvertes.fr/hal-01250058
Articles in National Peer-Reviewed Journals
-
21J.-D. Albert, V. Monbet, A. Jolivet-Gougeon, N. Fatih, M. Le Corvec, M. Seck, F. Charpentier, G. Coiffier, C. Boussard-Plédel, B. Bureau, P. Guggenbuhl, O. Loréal.
Une nouvelle méthode pour le diagnostic rapide d'arthrite septique utilisant la spectroscopie infrarouge, in: Revue du Rhumatisme, 2016, vol. 83, pp. 295–300. [ DOI : 10.1016/j.rhum.2016.05.007 ]
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01367198
International Conferences with Proceedings
-
22P. Héas, C. Herzet.
Reduced-Order Modeling of Hidden Dynamics, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASPP), Shangai, China, March 2016, pp. 1268–1272. [ DOI : 10.1109/ICASSP.2016.7471880 ]
https://hal.inria.fr/hal-01246074 -
23K. Zoubert-Ousseni, C. Villien, F. Le Gland.
Comparison of post-processing algorithms for indoor navigation trajectories, in: Proceedings of the 7th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, IEEE, October 2016, ISBN: 978-1-5090-2425-4nternational Conference on Indoor Positioning and Indoor Navigation. [ DOI : 10.1109/IPIN.2016.7743590 ]
https://hal.inria.fr/hal-01423198
Other Publications
-
24F. Cérou, B. Delyon, A. Guyader, M. Rousset.
A Central Limit Theorem for Fleming-Viot Particle Systems, November 2016, Preprint Arxiv.
https://hal.archives-ouvertes.fr/hal-01391689 -
25C. Herzet, A. Drémeau, P. Héas.
Model Reduction from Partial Observations, 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01394059 -
26P. Héas, C. Herzet.
Low-rank Approximation and Dynamic Mode Decomposition, 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01394064 -
27P. Héas, C. Herzet.
Optimal Low-Rank Dynamic Mode Decomposition, January 2017, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASPP), New Orleans, USA, 2017.
https://hal.archives-ouvertes.fr/hal-01429975
-
28A. Doucet, N. de Freitas, N. J. Gordon (editors)
Sequential Monte Carlo methods in practice, Statistics for Engineering and Information Science, Springer–Verlag, New York, 2001.
http://dx.doi.org/10.1007/978-1-4757-3437-9 -
29M. S. Arulampalam, S. Maksell, N. J. Gordon, T. Clapp.
A tutorial on particle filters for online nonlinear / non–Gaussian Bayesian tracking, in: IEEE Transactions on Signal Processing, February 2002, vol. SP–50, no 2 (Special issue on Monte Carlo Methods for Statistical Signal Processing), pp. 174–188.
http://dx.doi.org/10.1109/78.978374 -
30M. Bocquel.
Random finite sets in multi–target tracking: efficient sequential MCMC implementation, Department of Applied Mathematics, University of Twente, Enschede, October 2013.
http://purl.utwente.nl/publications/87496 -
31O. Cappé, S. J. Godsill, É. Moulines.
An overview of existing methods and recent advances in sequential Monte Carlo, in: Proceedings of the IEEE, May 2007, vol. 95, no 5 (Special issue on Large–Scale Dynamic Systems), pp. 899–924.
http://dx.doi.org/10.1109/JPROC.2007.893250 -
32D. J. Daley, J. Gani.
Epidemic modelling: An introduction, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1999, vol. 15.
http://dx.doi.org/10.1017/CBO9780511608834 -
33P.–T. De Boer, D. P. Kroese, S. Mannor, R. Y. Rubinstein.
A tutorial on the cross–entropy method, in: Annals of Operations Research, January 2005, vol. 134 (Special issue on the Cross-Entropy Method for Combinatorial Optimization, Rare Event Simulation and Neural Computation), no 1, pp. 19–67.
http://dx.doi.org/10.1007/s10479-005-5724-z -
34P. Del Moral.
Mean field simulation for Monte Carlo integration, Monographs on Statistics and Applied Probability, Chapman & Hall / CRC Press, London, 2013, vol. 126.
http://www.crcpress.com/product/isbn/9781466504059 -
35P. Del Moral.
Feynman–Kac formulae. Genealogical and interacting particle systems with applications, Probability and its Applications, Springer–Verlag, New York, 2004.
http://dx.doi.org/10.1007/978-1-4684-9393-1 -
36P. Del Moral, L. Miclo.
Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to nonlinear filtering, in: Séminaire de Probabilités XXXIV, Berlin, J. Azéma, M. Émery, M. Ledoux, M. Yor (editors), Lecture Notes in Mathematics, Springer–Verlag, 2000, vol. 1729, pp. 1–145.
http://dx.doi.org/10.1007/BFb0103798 -
37R. Douc, É. Moulines.
Limit theorems for weighted samples with applications to sequential Monte Carlo methods, in: The Annals of Statistics, October 2008, vol. 36, no 5, pp. 2344–2376.
http://dx.doi.org/10.1214/07-AOS514 -
38E. B. Dynkin, R. J. Vanderbei.
Stochastic waves, in: Transactions of the American Mathematical Society, February 1983, vol. 275, no 2, pp. 771–779.
http://dx.doi.org/10.2307/1999052 -
39D. Fox, J. Hightower, L. Liao, D. Schulz, G. Borriello.
Bayesian filtering for location estimation, in: IEEE Pervasive Computing, July/September 2003, vol. 2, no 3, pp. 24–33.
http://dx.doi.org/10.1109/MPRV.2003.1228524 -
40D. Fox, S. Thrun, W. Burgard, F. Dellaert.
Particle filters for mobile robot localization, in: Sequential Monte Carlo Methods in Practice, New York, A. Doucet, N. de Freitas, N. J. Gordon (editors), Statistics for Engineering and Information Science, Springer–Verlag, 2001, chap. 19, pp. 401–428.
http://dx.doi.org/10.1007/978-1-4757-3437-9_19 -
41D. Frenkel, B. Smit.
Understanding molecular simulation. From algorithms to applications, Computational Science Series, 2nd, Academic Press, San Diego, 2002, vol. 1.
http://www.sciencedirect.com/science/book/9780122673511 -
42D. T. Gillespie.
Approximate accelerated stochastic simulation of chemically reacting systems, in: The Journal of Chemical Physics, July 2001, vol. 115, no 4, pp. 1716–1733.
http://dx.doi.org/10.1063/1.1378322 -
43P. Glasserman.
Monte Carlo methods in financial engineering, Applications of Mathematics, Springer–Verlag, New York, 2004, vol. 53.
http://dx.doi.org/10.1007/978-0-387-21617-1 -
44P. Glasserman, P. Heidelberger, P. Shahabuddin, T. Zajic.
Multilevel splitting for estimating rare event probabilities, in: Operations Research, July–August 1999, vol. 47, no 4, pp. 585–600.
http://dx.doi.org/10.1287/opre.47.4.585 -
45N. J. Gordon, D. J. Salmond, A. F. M. Smith.
Novel approach to nonlinear / non–Gaussian Bayesian state estimation, in: IEE Proceedings, Part F, April 1993, vol. 140, no 2, pp. 107–113.
http://dx.doi.org/10.1049/ip-f-2.1993.0015 -
46F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, P.–J. Nordlund.
Particle filters for positioning, navigation, and tracking, in: IEEE Transactions on Signal Processing, February 2002, vol. SP–50, no 2 (Special issue on Monte Carlo Methods for Statistical Signal Processing), pp. 425–437.
http://dx.doi.org/10.1109/78.978396 -
47J. Houssineau.
Representation and estimation of stochastic populations, School of Engineering and Physical Sciences, Heriot–Watt University, Edinburgh, August 2015.
https://jeremiehoussineau.wordpress.com/ph-d-thesis-all-versions/ -
48M. Isard, A. Blake.
Condensation — Conditional density propagation for visual tracking, in: International Journal of Computer Vision, August 1998, vol. 29, no 1, pp. 5–28.
http://dx.doi.org/10.1023/A:1008078328650 -
49G. Kitagawa.
Monte Carlo filter and smoother for non–Gaussian nonlinear state space models, in: Journal of Computational and Graphical Statistics, 1996, vol. 5, no 1, pp. 1–25.
http://www.jstor.org/stable/1390750 -
50H. R. Künsch.
Recursive Monte Carlo filters : Algorithms and theoretical analysis, in: The Annals of Statistics, October 2005, vol. 33, no 5, pp. 1983–2021.
http://www.jstor.org/stable/3448632 -
51P. L'Écuyer, V. Demers, B. Tuffin.
Rare events, splitting, and quasi–Monte Carlo, in: ACM Transactions on Modeling and Computer Simulation, April 2007, vol. 17, no 2 (Special issue honoring Perwez Shahabuddin), Article 9.
http://dx.doi.org/10.1145/1225275.1225280 -
52F. Le Gland, N. Oudjane.
A robustification approach to stability and to uniform particle approximation of nonlinear filters : the example of pseudo-mixing signals, in: Stochastic Processes and their Applications, August 2003, vol. 106, no 2, pp. 279-316.
http://dx.doi.org/10.1016/S0304-4149(03)00041-3 -
53F. Le Gland, N. Oudjane.
Stability and uniform approximation of nonlinear filters using the Hilbert metric, and application to particle filters, in: The Annals of Applied Probability, February 2004, vol. 14, no 1, pp. 144–187.
http://dx.doi.org/10.1214/aoap/1075828050 -
54J. S. Liu.
Monte Carlo strategies in scientific computing, Springer Series in Statistics, Springer–Verlag, New York, 2001.
http://dx.doi.org/10.1007/978-0-387-76371-2 -
55R. P. S. Mahler.
Multitarget Bayes filtering via first–order multitarget moments, in: IEEE Transactions on Aerospace and Electronic Systems, October 2003, vol. AES–39, no 4, pp. 1152–1178.
http://dx.doi.org/10.1109/TAES.2003.1261119 -
56B. Ristić, M. S. Arulampalam, N. J. Gordon.
Beyond the Kalman Filter : Particle Filters for Tracking Applications, Artech House, Norwood, MA, 2004.
http://www.artechhouse.com/international/books/945.aspx -
57R. Y. Rubinstein, D. P. Kroese.
The cross–entropy method. A unified approach to combinatorial optimization, Monte Carlo simulation and machine learning, Information Science and Statistics, Springer–Verlag, New York, 2004.
http://dx.doi.org/10.1007/978-1-4757-4321-0 -
58C. J. Stone.
Consistent nonparametric regression (with discussion), in: The Annals of Statistics, July 1977, vol. 5, no 4, pp. 595–645.
http://www.jstor.org/stable/2958783 -
59L. D. Stone, R. L. Streit, T. L. Corwin, K. L. Bell.
Bayesian multiple target tracking, 2nd, Artech House, Norwood, MA, 2014.
http://www.artechhouse.com/international/books/2090.aspx -
60P. Tandéo, P. Ailliot, J. Ruiz, A. Hannart, B. Chapron, A. Cuzol, V. Monbet, R. Easton, R. Fablet.
Combining analog method and ensemble data assimilation: application to the Lorenz–63 chaotic system, in: Machine Learning and Data Mining Approaches to Climate Science, Cham, V. Lakshmanan, E. Gilleland, A. McGovern, M. Tingley (editors), Springer–Verlag, 2015, chap. 1, pp. 3–12.
http://dx.doi.org/10.1007/978-3-319-17220-0_1 -
61S. Thrun, W. Burgard, D. Fox.
Probabilistic robotics, Intelligent Robotics and Autonomous Agents, The MIT Press, Cambridge, MA, 2005.
http://mitpress.mit.edu/books/probabilistic-robotics -
62B.–N. Vo, W.–K. Ma.
The Gaussian mixture probability hypothesis density filter, in: IEEE Transactions on Signal Processing, November 2006, vol. SP–54, no 11, pp. 4091–4104.
http://dx.doi.org/10.1109/TSP.2006.881190 -
63A. W. van der Vaart, J. A. Wellner.
Weak convergence and empirical processes, Springer Series in Statistics, Springer–Verlag, Berlin, 1996.
http://dx.doi.org/10.1007/978-1-4757-2545-2