Bibliography
Major publications by the team in recent years
-
1F. Blanqui.
Definitions by rewriting in the Calculus of Constructions, in: Mathematical Structures in Computer Science, 2005, vol. 15, no 1, pp. 37-92. [ DOI : 10.1017/S0960129504004426 ]
http://hal.inria.fr/inria-00105648/en/ -
2F. Blanqui, A. Koprowski.
CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, in: Mathematical Structures in Computer Science, 2011, vol. 21, no 4, pp. 827-859.
http://hal.inria.fr/inria-00543157/en/ -
3M. Boespflug.
Conception d'un noyau de vérification de preuves pour le lambda-Pi-calcul modulo, École Polytechnique, 2011. -
4G. Burel.
Experimenting with Deduction Modulo, in: CADE 2011, V. Sofronie-Stokkermans, N. Bjørner (editors), Lecture Notes in Artificial Intelligence, Springer, 2011, vol. 6803, pp. 162–176. -
5G. Dowek.
Polarized Resolution Modulo, in: IFIP Theoretical Computer Science, 2010. -
6G. Dowek, T. Hardin, C. Kirchner.
Theorem proving modulo, in: Journal of Automated Reasoning, 2003, vol. 31, pp. 33-73. -
7C. Dubois, T. Hardin, V. Donzeau-Gouge.
Building certified components within FOCAL, in: Revised Selected Papers from the Fifth Symposium on Trends in Functional Programming, TFP 2004, München, Germany, 25-26 November 2004, H.-W. Loidl (editor), Trends in Functional Programming, Intellect, 2006, vol. 5, pp. 33-48. -
8O. Hermant.
Resolution is Cut-Free, in: Journal of Automated Reasoning, March 2010, vol. 44, no 3, pp. 245-276. -
9M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.
Verifying B Proof Rules using Deep Embedding and Automated Theorem Proving, in: Software and Systems Modeling (SoSyM), June 2013. -
10M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.
Tableaux Modulo Theories Using Superdeduction, in: Global Journal of Advanced Software Engineering (GJASE), December 2014, vol. 1, pp. 1 - 13. [ DOI : 10.1007/978-3-642-31365-3_26 ]
https://hal.archives-ouvertes.fr/hal-01099338
Doctoral Dissertations and Habilitation Theses
-
11R. Cauderlier.
Object-Oriented Mechanisms for Interoperability between Proof Systems, Conservatoire National Des Arts et Métiers, Paris, October 2016.
https://hal.inria.fr/tel-01415945 -
12P. Halmagrand.
Automated Deduction and Proof Certification for the B Method, Conservatoire National Des Arts et Métiers, Paris, December 2016.
https://hal.inria.fr/tel-01420460
Articles in International Peer-Reviewed Journals
-
13P. Arrighi, G. Dowek.
Free fall and cellular automata, in: Electronic Proceedings in Theoretical Computer Science, 2016, vol. 204, pp. 1 - 10. [ DOI : 10.4204/EPTCS.204.1 ]
https://hal.inria.fr/hal-01421712
International Conferences with Proceedings
-
14P. Arrighi, S. Martiel, S. Perdrix.
Reversible Causal Graph Dynamics, in: Reversible Computation, Bologna, Italy, Lecture Notes in Computer Science, July 2016, vol. 9720, pp. 73-88. [ DOI : 10.1007/978-3-319-40578-0_5 ]
https://hal.archives-ouvertes.fr/hal-01361427 -
15R. Cauderlier.
A Rewrite System for Proof Constructivization, in: Workshop on Logical Frameworks and Meta-Languages: Theory and Practice 2016, Porto, Portugal, June 2016, pp. 1 - 7. [ DOI : 10.1145/2966268.2966270 ]
https://hal.inria.fr/hal-01420634 -
16R. Cauderlier, C. Dubois.
ML Pattern-Matching, Recursion, and Rewriting: From FoCaLiZe to Dedukti, in: 13th ICTAC International Colloquium on Theoretical Aspects of Computing, Taipei, Taiwan, October 2016, pp. 459 - 468. [ DOI : 10.1007/978-3-319-46750-4_26 ]
https://hal.inria.fr/hal-01420638 -
17P. Halmagrand.
Soundly Proving B Method Formulae Using Typed Sequent Calculus, in: 13th International Colloquium on Theoretical Aspects of Computing (ICTAC), Taipei, Taiwan, A. Sampaio, F. Wang (editors), Lecture Notes in Computer Science, Springer International Publishing, October 2016, vol. 9965, pp. 196-213. [ DOI : 10.1007/978-3-319-46750-4_12 ]
https://hal.archives-ouvertes.fr/hal-01342849
Conferences without Proceedings
-
18A. Assaf, G. Dowek, J.-P. Jouannaud, J. Liu.
Encoding Proofs in Dedukti: the case of Coq proofs, in: Proceedings Hammers for Type Theories, Coimbra, Portugal, Proc. Higher-Order rewriting Workshop, Easy Chair, July 2016.
https://hal.inria.fr/hal-01330980 -
19A. Assaf, G. Dowek, J.-P. Jouannaud, J. Liu.
Untyped Confluence in Dependent Type Theories, in: Proceedings Higher-Order Rewriting Workshop, Porto, Portugal, Proc. Higher-Order rewriting Workshop, Easy-Chair, June 2016.
https://hal.inria.fr/hal-01330955 -
20K. Ji.
Resolution in Solving Graph Problems, in: 8th Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE 2016), Toronto, Canada, July 2016.
https://hal.archives-ouvertes.fr/hal-01245138 -
21S. Wang.
Higher Order Proof Engineering: Proof Collaboration, Transformation, Checking and Retrieval, in: AITP 2016 - Conference on Artificial Intelligence and Theorem Proving, Obergurgl, Austria, April 2016.
https://hal.inria.fr/hal-01250197
Other Publications
-
22P. Arrighi, G. Dowek.
What is the Planck constant the magnitude of?, December 2016, working paper or preprint.
https://hal.inria.fr/hal-01421711 -
23F. Blanqui.
Size-based termination of higher-order rewrite systems, January 2017, working paper or preprint.
https://hal.inria.fr/hal-01424921 -
24G. Dowek.
Rules and derivations in an elementary logic course, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01252124 -
25F. Thiré.
Internship report MPRI 2 Reverse engineering on arithmetic proofs, ENS Cachan ; Paris Diderot University, September 2016, 26 p.
https://hal.inria.fr/hal-01424816
-
26Y. Bertot, P. Castéran.
Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, Springer-Verlag, 2004. -
27D. Cousineau, G. Dowek.
Embedding Pure Type Systems in the lambda-Pi-calculus modulo, in: Typed lambda calculi and applications, S. Ronchi della Rocca (editor), Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 4583, pp. 102-117. -
28D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, O. Hermant.
Proof Certification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the Tortoise with Shorter Steps, in: IWIL - 10th International Workshop on the Implementation of Logics - 2013, Stellenbosch, South Africa, S. Schulz, G. Sutcliffe, B. Konev (editors), EasyChair, December 2013.
https://hal.inria.fr/hal-00909688 -
29D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, O. Hermant.
Zenon Modulo: When Achilles Outruns the Tortoise using Deduction Modulo, in: LPAR - Logic for Programming Artificial Intelligence and Reasoning - 2013, Stellenbosch, South Africa, K. McMillan, A. Middeldorp, A. Voronkov (editors), Springer, December 2013, vol. 8312, pp. 274-290. [ DOI : 10.1007/978-3-642-45221-5_20 ]
https://hal.inria.fr/hal-00909784 -
30D. Delahaye, M. Jacquel.
Recovering Intuition from Automated Formal Proofs using Tableaux with Superdeduction, in: electronic Journal of Mathematics and Technology, February 2013, vol. 7, no 2, pp. 1 - 20.
https://hal.archives-ouvertes.fr/hal-01099371 -
31R. Gandy.
Church's Thesis and Principles for Mechanisms, in: The Kleene Symposium, North-Holland, 1980. -
32R. Harper, F. Honsell, G. Plotkin.
A Framework for Defining Logics, in: Journal of the association for computing machinery, 1993, pp. 194–204. -
33J. Harrison.
HOL Light: An Overview, in: Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, vol. 5674, pp. 60-66.
http://dx.doi.org/10.1007/978-3-642-03359-9_4 -
34M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.
Verifying B Proof Rules using Deep Embedding and Automated Theorem Proving, in: Software Engineering and Formal Methods, November 2011, vol. 7041, pp. 253-268. [ DOI : 10.1007/978-3-642-24690-6_18 ]
https://hal.archives-ouvertes.fr/hal-00722373 -
35M. Jacquel, K. Berkani, D. Delahaye, C. Dubois.
Tableaux Modulo Theories Using Superdeduction, in: Global Journal of Advanced Software Engineering (GJASE), December 2014, vol. 1, pp. 1 - 13. [ DOI : 10.1007/978-3-642-31365-3_26 ]
https://hal.archives-ouvertes.fr/hal-01099338 -
36K. Korovin.
iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description), in: IJCAR, A. Armando, P. Baumgartner (editors), Lecture Notes in Artificial Intelligence, Springer, 2008, vol. 5195, pp. 292-298. -
37F. Rabe, M. Kohlhase.
A Scalable Module System, in: Inf. Comput., September 2013, vol. 230, pp. 1–54.
http://dx.doi.org/10.1016/j.ic.2013.06.001