Overall Objectives
New Software and Platforms
Overall Objectives
New Software and Platforms


Publications of the year

Articles in International Peer-Reviewed Journals

  • 1S. Artemova, L. Jaillet, S. Redon.

    Automatic molecular structure perception for the universal force field, in: Journal of Computational Chemistry, March 2016. [ DOI : 10.1002/jcc.24309 ]

  • 2P. Buslaev, V. I. Gordeliy, S. Grudinin, I. Y. Gushchin.

    Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations, in: Journal of Chemical Theory and Computation, March 2016, vol. 12, no 3, pp. 1019–1028. [ DOI : 10.1021/acs.jctc.5b01106 ]

  • 3L. Debreu, E. Neveu, E. Simon, F.-X. Le Dimet, A. Vidard.

    Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, in: Quarterly Journal of the Royal Meteorological Society, January 2016, vol. 142, no 694, pp. 515–528. [ DOI : 10.1002/qj.2676 ]

  • 4M. El Houasli, B. Maigret, M.-D. Devignes, A. W. Ghoorah, S. Grudinin, D. Ritchie.

    Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP-11 structural models, in: Proteins: Structure, Function, and Genetics, October 2016. [ DOI : 10.1002/prot.25182 ]

  • 5S. Grudinin, M. Kadukova, A. Eisenbarth, S. Marillet, F. Cazals.

    Predicting binding poses and affinities for protein-ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation, in: Journal of Computer-Aided Molecular Design, September 2016, vol. 30, no 9, pp. 791–804. [ DOI : 10.1007/s10822-016-9976-2 ]

  • 6S. Grudinin, P. Popov, E. Neveu, G. Cheremovskiy.

    Predicting Binding Poses and Affinities in the CSAR 2013―2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential, in: Journal of Chemical Information and Modeling, June 2016, vol. 56, no 6, pp. 1053–1062. [ DOI : 10.1021/acs.jcim.5b00339 ]

  • 7M. Kadukova, S. Grudinin.

    Knodle: A Support Vector Machines-Based Automatic Perception of Organic Molecules from 3D Coordinates, in: Journal of Chemical Information and Modeling, July 2016, vol. 56, no 8, pp. 1410–1419. [ DOI : 10.1021/acs.jcim.5b00512 ]

  • 8M. F. Lensink, S. Velankar, A. Kryshtafovych, S.-Y. Huang, D. Schneidman-Duhovy, A. Sali, J. Segura, N. Fernandez-Fuentes, S. Viswanath, R. Elber, S. Grudinin, P. Popov, E. Neveu, H. Lee, M. Baek, S. Park, L. Heo, G. R. Lee, C. Seok, S. Qin, H.-X. Zhou, D. W. Ritchie, B. Maigret, M.-D. Devignes, A. Ghoorah, M. Torchala, R. A.G. Chaleil, P. A. Bates, E. Ben-Zeev, M. Eisenstein, S. Negi S., T. Vreven, B. G. Pierce, T. M. Borrman, J. Yu, F. Ochsenbein, Z. Weng, R. Guerois, A. Vangone, J. P. Rodrigues, G. van Zundert, M. Nellen, L. Xue, E. Karaca, A. S. J. Melquiond, K. Visscher, P. L. Kastritis, A. M. J. J. Bonvin, X. Xu, L. Qiu, C. Yan, J. Li, Z. Ma, J. Cheng, X. Zou, Y. Sheng, L. X. Peterson, H.-R. Kim, A. Roy, X. Han, J. Esquivel-Rodríguez, D. Kihara, X. Yu, N. J. Bruce, J. C. Fuller, R. C. Wade, I. Anishchenko, P. J. Kundrotas, I. A. Vakser, K. Imai, K. Yamada, T. Oda, T. Nakamura, K. Tomii, C. Pallara, M. Romero-Durana, B. Jiménez-García, I. H. Moal, J. Fernández-Recio, J. Y. Joung, J. Y. Kim, K. Joo, J. Lee, D. Kozakov, S. Vajda, S. Mottarella, D. R. Hall, D. Beglov, A. Mamonov, B. Xia, T. Bohnuud, C. A. Del Carpio, E. Ichiishi, N. Marze, D. Kuroda, S. S. R. Burman, J. J. Gray, E. Chermak, L. Cavallo, R. Oliva, A. Tovchigrechko, S. J. Wodak.

    Prediction of homo- and hetero-protein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment, in: Proteins - Structure, Function and Bioinformatics, September 2016, vol. 84, no S1, pp. 323–348. [ DOI : 10.1002/prot.25007 ]

  • 9P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, M.-P. Cani.

    Adaptive Physically Based Models in Computer Graphics, in: Computer Graphics Forum, 2016. [ DOI : 10.1111/cgf.12941 ]

  • 10E. Neveu, D. Ritchie, P. Popov, S. Grudinin.

    PEPSI-Dock: a detailed data-driven protein–protein interaction potential accelerated by polar Fourier correlation, in: Bioinformatics, August 2016, vol. 32, no 7, pp. i693-i701. [ DOI : 10.1093/bioinformatics/btw443 ]

  • 11S. Redon, G. Stoltz, Z. Trstanova.

    Error Analysis of Modified Langevin Dynamics, in: Journal of Statistical Physics, August 2016, vol. 164, no 4, pp. 735–771. [ DOI : 10.1007/s10955-016-1544-6 ]

  • 12D. W. Ritchie, S. Grudinin.

    Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry, in: Journal of Applied Crystallography, February 2016, vol. 49, no 1, pp. 158-167. [ DOI : 10.1107/S1600576715022931 ]


International Conferences with Proceedings

  • 13R. Pogodin, A. Katrutsa, S. Grudinin.

    Quadratic Programming Approach to Fit Protein Complexes into Electron Density Maps, in: Information Technology and Systems 2016, Repino, St. Petersburg, Russia, September 2016.

  • 14A. Riazanov, M. Karasikov, S. Grudinin.

    Inverse Protein Folding Problem via Quadratic Programming, in: Information Technology and Systems 2016, Repino, St. Petersburg, Russia, September 2016, pp. 561-568.


Other Publications

References in notes
  • 16B. Ahmadi, M. Kassiriha, K. Khodabakhshi, E. R. Mafi.

    Effect of nano layered silicates on automotive polyurethane refinish clear coat, in: Progress in Organic Coatings, 2007, vol. 60, no 2, pp. 99 - 104. [ DOI : 10.1016/j.porgcoat.2007.07.008 ]

  • 17F. H. Allen.

    The Cambridge Structural Database: a quarter of a million crystal structures and rising, in: Acta Crystallographica Section B, Jun 2002, vol. 58, no 3 Part 1, pp. 380–388.

  • 18F. Ample, S. Ami, C. Joachim, F. Thiemann, G. Rapenne.

    A Morse manipulator molecule for the modulation of metallic shockley surface states, in: Chemical Physics Letters, 2007, vol. 434, pp. 280-285. [ DOI : 10.1016/j.cplett.2006.12.021 ]

  • 19F. Ample, C. Joachim.

    A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface, in: Surface Science, 2006, vol. 600, no 16, pp. 3243 - 3251. [ DOI : 10.1016/j.susc.2006.06.015 ]

  • 20A. Arkhipov, P. Freddolino, K. Imada, K. Namba, K. Schulten.

    Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum, in: Biophysical Journal, 2006, vol. 91, pp. 4589-4597.
  • 21S. Artemova, S. Grudinin, S. Redon.

    A comparison of neighbor search algorithms for large rigid molecules, in: Journal of Computational Chemistry, 2011, vol. 32, no 13, pp. 2865–2877.

  • 22S. Artemova, S. Redon.

    Adaptively Restrained Particle Simulations, in: Phys. Rev. Lett., Nov 2012, vol. 109.

  • 23H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.

    The Protein Data Bank, in: Nucleic Acids Research, 2000, vol. 28, no 1, pp. 235-242. [ DOI : 10.1093/nar/28.1.235 ]

  • 24X. Blanc, C. Le Bris, F. Legoll.

    Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2005, vol. 39, no 04, pp. 797-826.

  • 25M. Bosson, S. Grudinin, X. Bouju, S. Redon.

    Interactive physically-based structural modeling of hydrocarbon systems, in: Journal of Computational Physics, 2012, vol. 231, no 6, pp. 2581 - 2598. [ DOI : 10.1016/j.jcp.2011.12.006 ]

  • 26D. W. Brenner.

    Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, in: Phys. Rev. B, Nov 1990, vol. 42, pp. 9458–9471.

  • 27T. Cagin, G. Wang, R. Martin, G. Zamanakos, N. Vaidehi, D. T. Mainz, W. A. Goddard III.

    Multiscale modeling and simulation methods with applications to dendritic polymers, in: Computational and Theoretical Polymer Science, 2001, vol. 11, no 5, pp. 345 - 356. [ DOI : 10.1016/S1089-3156(01)00026-5 ]

  • 28E. Cances, F. Castella, P. Chartier, E. Faou, C. L. Bris, F. Legoll, G. Turinici.

    Long-time averaging for integrable Hamiltonian dynamics, in: Numerische Mathematik, 2005, vol. 100, pp. 211-232, 10.1007/s00211-005-0599-0.

  • 29Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins.

    Applications and implications of nanotechnologies for the food sector, in: Food Additives & Contaminants: Part A, 2008, vol. 25, no 3, pp. 241-258.

  • 30X. Chen, S. S. Mao.

    Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, in: ChemInform, 2007, vol. 38, no 41.

  • 31G. M. Clore.

    Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement, in: Molecular Biosystems, 2008, vol. 4, no 11, pp. 1058–1069.
  • 32S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, F. Players.

    Predicting protein structures with a multiplayer online game, in: Nature, 2010, vol. 466, pp. 756-760.
  • 33M. Curreli, A. H. Nadershahi, G. Shahi.

    Emergence of nanomedical devices for the diagnosis and treatment of cancer: the journey from basic science to commercialization, in: International Journal of Technology Transfer and Commercialisation, 2008, vol. 7, no 4, pp. 290-307.
  • 34E. Darve.

    The Fast Multipole Method: Numerical Implementation, in: Journal of Computational Physics, 2000.
  • 35H. Dietz, S. M. Douglas, W. M. Shih.

    Folding DNA into Twisted and Curved Nanoscale Shapes, in: Science, 2009, vol. 325, no 5941, pp. 725-730. [ DOI : 10.1126/science.1174251 ]

  • 36R. C. Edgar.

    MUSCLE: multiple sequence alignment with high accuracy and high throughput, in: Nucleic acids research, 2004, vol. 32, no 5, pp. 1792–1797.
  • 37S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn, E.-M. Strauch, I. A. Wilson, D. Baker.

    Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin, in: Science, 2011, vol. 332, no 6031, pp. 816-821. [ DOI : 10.1126/science.1202617 ]

  • 38G. Fox-Rabinovich, B. Beake, K. Yamamoto, M. Aguirre, S. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, L. Shuster.

    Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, in: Surface and Coatings Technology, 2010, vol. 204, pp. 3698 - 3706. [ DOI : 10.1016/j.surfcoat.2010.04.050 ]

  • 39M. Goldberg, R. Langer, X. Jia.

    Nanostructured materials for applications in drug delivery and tissue engineering, in: Journal of Biomaterials Science, Polymer Edition, 2007, vol. 18, no 3, pp. 241-268. [ DOI : doi:10.1163/156856207779996931 ]

  • 40J.-H. He.

    An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, in: International Journal of Modern Physics B, 2008, vol. 22, no 21, pp. 3487-3578.
  • 41S. Helveg.

    Structure and Dynamics of Nanocatalysts, in: Microscopy and Microanalysis, 2010, vol. 16, no Supplement S2, pp. 1712-1713.

  • 42A. Heyden, D. G. Truhlar.

    Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic/Coarse-Grained Multiscale Simulations, in: Journal of Chemical Theory and Computation, 2008, vol. 4, no 2, pp. 217-221.

  • 43V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling.

    Comparison of multiple Amber force fields and development of improved protein backbone parameters, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 3, pp. 712–725.

  • 44C. Joachim, H. Tang, F. Moresco, G. Rapenne, G. Meyer.

    The design of a nanoscale molecular barrow, in: Nanotechnology, 2002, vol. 13, no 3, 330 p.

  • 45M. Kadukova, S. Grudinin.

    Knodle: A Support Vector Machines-Based Automatic Perception of Organic Molecules from 3D Coordinates, in: J. Chem. Inf. Model., 2016, vol. 56, no 8, pp. 1410–1419.
  • 46L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten.

    NAMD2: Greater Scalability for Parallel Molecular Dynamics, in: Journal of Computational Physics, 1999, vol. 151, no 1, pp. 283 - 312. [ DOI : 10.1006/jcph.1999.6201 ]

  • 47S. K. Kearsley.

    On the orthogonal transformation used for structural comparisons, in: Acta Crystallographica Section A: Foundations of Crystallography, 1989, vol. 45, no 2, pp. 208–210.
  • 48D. Kozakov, R. Brenke, S. R. Comeau, S. Vajda.

    PIPER: an FFT-based protein docking program with pairwise potentials, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 2, pp. 392–406.
  • 49D. Kozakov, K. Li, D. R. Hall, D. Beglov, J. Zheng, P. Vakili, O. Schueler-Furman, I. C. Paschalidis, G. M. Clore, S. Vajda.

    Encounter complexes and dimensionality reduction in protein–protein association, in: Elife, 2014, vol. 3, e01370 p.
  • 50Y. Li, L. Han, Z. Liu, R. Wang.

    Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods an General Results, in: J. Chem. Inf. Model., Jun 2014, vol. 54, no 6, pp. 1717-36.

  • 51Z. Li, H. A. Scheraga.

    Monte Carlo-minimization approach to the multiple-minima problem in protein folding, in: Proceedings of the National Academy of Sciences, 1987, vol. 84, no 19, pp. 6611-6615.

  • 52L. Lo, Y. Li, K. Yeung, C. Yuen.

    Indicating the development stage of nanotechnology in the textile and clothing industry, in: International Journal of Nanotechnology, 2007, vol. 4, no 6, pp. 667-679.
  • 53W. Lu, C. M. Lieber.

    Nanoelectronics from the bottom up, in: Nature materials, 2007, vol. 6, no 11, pp. 841-850.
  • 54S. O. Nielsen, P. B. Moore, B. Ensing.

    Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids, in: Phys. Rev. Lett., Dec 2010, vol. 105, 237802.

  • 55A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson.

    Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds, in: Nano Letters, 2008, vol. 8, no 1, pp. 162-167, PMID: 18088150.

  • 56P. Popov, S. Grudinin.

    Rapid determination of RMSDs corresponding to macromolecular rigid body motions, in: Journal of computational chemistry, 2014, vol. 35, no 12, pp. 950–956.
  • 57M. Praprotnik, L. Delle Site, K. Kremer.

    Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids, in: Phys. Rev. E, Jun 2006, vol. 73, 066701.

  • 58M. Praprotnik, S. Matysiak, L. D. Site, K. Kremer, C. Clementi.

    Adaptive resolution simulation of liquid water, in: Journal of Physics: Condensed Matter, 2007, vol. 19, no 29, 292201.

  • 59M. Praprotnik, L. D. Site, K. Kremer.

    A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation, in: The Journal of Chemical Physics, 2007, vol. 126, no 13, 134902.

  • 60M. Praprotnik, L. D. Site, K. Kremer.

    Multiscale Simulation of Soft Matter: From Scale Bridging to Adaptive Resolution, in: Annual Review of Physical Chemistry, 2008, vol. 59, no 1, pp. 545-571.

  • 61P. Procacci, T. Darden, M. Marchi.

    A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions, in: The Journal of Physical Chemistry, 1996, vol. 100, no 24, pp. 10464-10468.

  • 62X. Qian, T. Schlick.

    Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations, in: Journal of Chemical Physics, 2002, vol. 116, pp. 5971-5983.
  • 63G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan.

    Stereochemistry of polypeptide chain configurations, in: Journal of molecular biology, 1963, vol. 7, no 1, pp. 95–99.
  • 64D. W. Ritchie, G. J. Kemp.

    Protein docking using spherical polar Fourier correlations, in: Proteins: Structure, Function, and Bioinformatics, 2000, vol. 39, no 2, pp. 178–194.

  • 65M. C. Roco.

    The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years, in: Journal of Nanoparticle Research, 2010.
  • 66B. Rooks.

    A shorter product development time with digital mock-up, in: Assembly Automation, 1998, vol. 18, no 1, pp. 34-38. [ DOI : doi:10.1108/01445159810201405 ]

  • 67R. Rossi, M. Isorce, S. Morin, J. Flocard, K. Arumugam, S. Crouzy, M. Vivaudou, S. Redon.

    Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design, in: Bioinformatics, 2007, vol. 23, no 13. [ DOI : 10.1093/bioinformatics/btm191 ]

  • 68R. E. Rudd.

    Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems, in: International Journal for Numerical Methods in Engineering, 2004.
  • 69A. Shih, P. Freddolino, A. Arkhipov, K. Schulten.

    Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations, in: Journal of Structural Biology, 2007, vol. 157, pp. 579-592.
  • 70Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C. Yu-Hung, L. B. Alemany, T. Sasaki, J.-F. Morin, J. M. Guerrero, K. F. Kelly, J. M. Tour.

    Surface-Rolling Molecules, in: Journal of the American Chemical Society, 2006, vol. 128, no 14, pp. 4854-4864, PMID: 16594722.

  • 71E. G. Stein, L. M. Rice, A. T. Brünger.

    Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation, in: Journal of Magnetic Resonance, 1997, vol. 124, no 1, pp. 154 - 164. [ DOI : 10.1006/jmre.1996.1027 ]

  • 72X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai.

    Nano-graphene oxide for cellular imaging and drug delivery, in: Nano Research, 2008, vol. 1, pp. 203-212, 10.1007/s12274-008-8021-8.

  • 73D. Tomalia, L. Reyna, S. Svenson.

    Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, in: Biochemical Society Transactions, 2007, vol. 35, pp. 61-67.
  • 74N. Vaidehi, W. A. Goddard.

    Domain Motions in Phosphoglycerate Kinase using Hierarchical NEIMO Molecular Dynamics Simulations, in: The Journal of Physical Chemistry A, 2000, vol. 104, no 11, pp. 2375-2383.

  • 75T. Vettorel, A. Y. Grosberg, K. Kremer.

    Statistics of polymer rings in the melt: a numerical simulation study, in: Physical Biology, 2009, vol. 6, no 2, 025013 p.

  • 76W. Yang.

    Direct calculation of electron density in density-functional theory, in: Phys. Rev. Lett., Mar 1991, vol. 66, pp. 1438–1441.

  • 77W. Yang.

    Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules, in: Journal of Molecular Structure: THEOCHEM, 1992, vol. 255, no 0, pp. 461 - 479. [ DOI : 10.1016/0166-1280(92)85024-F ]

  • 78A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard.

    ReaxFF: A Reactive Force Field for Hydrocarbons, in: The Journal of Physical Chemistry A, 2001, vol. 105, no 41, pp. 9396-9409.