EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1J.-M. Salotti, E. Ferreri, O. Ly, D. Daney.

    Classification des Systèmes Cobotiques, in: Ingénierie cognitique, January 2018, vol. 1, no 1.

    https://hal.archives-ouvertes.fr/hal-01943946
  • 2J. M. Salotti.

    Bayesian network for the prediction of situation awareness errors, in: International Journal of Human Factors Modelling and Simulation, January 2018, vol. 6, no 2/3, pp. 119-126.

    https://hal.inria.fr/hal-01944420

International Conferences with Proceedings

  • 3J.-M. Salotti.

    European Mars mission architecture using an enhanced Ariane launcher, in: 69th International Astronautical Congress, Bremen, Germany, IAC-18,A5,2,3,x42434, October 2018.

    https://hal.inria.fr/hal-01944356
  • 4J.-M. Salotti.

    Mars sample return as a key step before manned missions, in: 2nd International Mars Sample Return Conference, Berlin, Germany, April 2018.

    https://hal.inria.fr/hal-01945732

National Conferences with Proceedings

  • 5J. Colombel, D. Daney, B. Busch.

    ROS for Human Movement Analysis and Musculoskeletal Risk Prevention, in: Journées Nationales sur ROS, Toulouse, France, June 2018.

    https://hal.inria.fr/hal-01955378

Scientific Books (or Scientific Book chapters)

  • 6A. Massein, D. Daney, Y. Papegay.

    Robust Design of Parameter Identification, in: Advances in Robot Kinematics 2016, J. Lenarčič, J.-P. Merlet (editors), Springer Proceedings in Advanced Robotics, Springer International Publishing AG, 2018, vol. 4. [ DOI : 10.1007/978-3-319-56802-7_33 ]

    https://hal.inria.fr/hal-01531034

Internal Reports

  • 7A. Chevallier, S. Pion, F. Cazals.

    Hamiltonian Monte Carlo with boundary reflections, and application to polytope volume calculations, Inria Sophia Antipolis, France, November 2018, no RR-9222.

    https://hal.archives-ouvertes.fr/hal-01919855

Scientific Popularization

Patents

  • 9G. Pugach, D. Daney.

    Textile intelligent adapté pour la détection de mouvement et/ou de déformation, November 2018, no FR1860192.

    https://hal.inria.fr/hal-01944282
References in notes
  • 10Numii, la santé au travail à l’ère du digital, 2018.

    https://www.inria.fr/centre/bordeaux/actualites/numii-r-la-sante-au-travail-a-l-ere-du-digital
  • 11NCES 2018: Numii/AIO se rêve en acteur incontournable de la santé au travail, 2018.

    https://objectifaquitaine.latribune.fr/business/2018-01-11/ces-2018-numii-aio-se-reve-en-acteur-incontournable-de-la-sante-au-travail-764274.html
  • 12J. Bernon, E. Escriva, J. M. Schweitzer.

    Agir sur la prévention durable des TMS, Anact, 2011.
  • 13V. Bonnet, V. Richard, V. Camomilla, G. Venture, A. Cappozzo, R. Dumas.

    Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model, in: Journal of Biomechanics, 2017.
  • 14R. Brooks.

    The Robots Are Here, MIT Technology Review, 2004.
  • 15P. Douillet.

    Agir sur Prévenir les risques psychosociaux, Anact, 2013.
  • 16M. Endsley, D. G. Jones.

    Designing for Situation Awareness: An Approach to User-Centered Design, Taylor & Francis, London, 2012.
  • 17D. Ferris.

    The exoskeletons are here, in: Journal of NeuroEngineering and Rehabilitation, June 2009, vol. 6, no 1.

    http://dx.doi.org/10.1186/1743-0003-6-17
  • 18D. P. Ferris, G. S. Sawicki, M. A. Daley.

    A physiologist's perspective on robotic exoskeletons for human locomotion, in: International journal of Humanoid Robotics, September 2007, vol. 4, no 3, pp. 507–528.

    http://dx.doi.org/10.1142/S0219843607001138
  • 19A. Groth, M. Ghil.

    Monte Carlo singular spectrum analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets, in: Journal of Climate, 2015, vol. 28, no 19, pp. 7873–7893.
  • 20S. Haddadin, E. Croft.

    Physical Human-Robot Interaction, in: Handbook of Robotics, B. Siciliano, O. Khatib (editors), Springer Verlag, 2016, pp. 1835–1874.
  • 21S. Hignett, L. McAtamney.

    Rapid Entire Body Assessment (REBA), in: Applied Ergonomics, April 2000, vol. 31, no 2, pp. 201–205. [ DOI : 10.1016/S0003-6870(99)00039-3 ]

    http://www.sciencedirect.com/science/article/pii/S0003687099000393
  • 22J. Jacquier-Bret, P. Gorce, G. Motti Lilian, N. Vigouroux.

    Biomechanical analysis of upper limb during the use of touch screen: motion strategies identification, in: Ergonomics, March 2017, vol. 60, no 3, pp. 358–365.

    http://dx.doi.org/10.1080/00140139.2016.1175671
  • 23H. Jaeger.

    Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns, in: Journal of Machine Learning Research, 2017, vol. 18, no 13, pp. 1-43.

    http://jmlr.org/papers/v18/15-449.html
  • 24L. Joseph, V. Padois, G. Morel.

    Towards X-ray medical imaging with robots in the open: safety without compromising performances, in: Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, May 2018, pp. 6604–6610. [ DOI : 10.1109/ICRA.2018.8460794 ]

    https://hal.archives-ouvertes.fr/hal-01614508/en
  • 25O. Karhu, P. Kansi, I. Kuorinka.

    Correcting working postures in industry: A practical method for analysis, in: Applied Ergonomics, December 1977, vol. 8, no 4, pp. 199–201. [ DOI : 10.1016/0003-6870(77)90164-8 ]

    http://www.sciencedirect.com/science/article/pii/0003687077901648
  • 26D. Kee, W. Karwowski.

    LUBA: an assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time, in: Applied Ergonomics, August 2001, vol. 32, no 4, pp. 357–366. [ DOI : 10.1016/S0003-6870(01)00006-0 ]

    http://www.sciencedirect.com/science/article/pii/S0003687001000060
  • 27X. Lamy.

    Conception d'une Interface de Pilotage d'un Cobot, Université Pierre et Marie Curie - Paris VI, March 2011.
  • 28S. E. Mathiassen.

    Diversity and variation in biomechanical exposure: What is it, and why would we like to know?, in: Applied Ergonomics, 2006, vol. 37, no 4, pp. 419 - 427, Special Issue: Meeting Diversity in Ergonomics. [ DOI : 10.1016/j.apergo.2006.04.006 ]

    http://www.sciencedirect.com/science/article/pii/S0003687006000482
  • 29P. Maurice.

    Virtual ergonomics for the design of collaborative robots, Université Pierre et Marie Curie - Paris VI, June 2015.
  • 30L. McAtamney, E. N. Corlett.

    RULA: a survey method for the investigation of work-related upper limb disorders, in: Applied ergonomics, 1993, vol. 24, no 2, pp. 91–99.
  • 31A. Meguenani, V. Padois, J. Da Silva, A. Hoarau, P. Bidaud.

    Energy-based control for safe Human-robot physical interactions, in: Springer Proceedings in Advanced Robotics - The 2016 International Symposium on Experimental Robotics, D. Kulic, G. Venture, Y. Nakamura, O. Khatib (editors), Springer International Publishing AG, 2017. [ DOI : 10.1007/978-3-319-50115-4_70 ]

    http://hal.archives-ouvertes.fr/hal-01398790/en
  • 32J. -P. Merlet, D. Daney.

    , Appropriate Design of Parallel ManipulatorsL. Wang, J. Xi (editors), Springer London, London, 2008, pp. 1–25.

    https://doi.org/10.1007/978-1-84800-147-3_1
  • 33T. Moulières-Seban, D. Bitonneau, J.-M. Salotti, J.-F. Thibault, B. Claverie.

    Human Factors Issues for the Design of a Cobotic System, in: Advances in Human Factors in Robots and Unmanned Systems, P. Savage-Knepshield, J. Chen (editors), Advances in Intelligent Systems and Computing, Springer International Publishing, 2017, pp. 375–385.
  • 34T. Moulières-Seban.

    Conception de systèmes cobotiques industriels : approche cognitique : application à la production pyrotechnique au sein d'Ariane Group, Université de Bordeaux, November 2017.

    https://hal.archives-ouvertes.fr/tel-01670146
  • 35B. Mutlu, N. Roy, S. Sabanovic.

    Cognitive Human-Robot Interactions, in: Handbook of Robotics, B. Siciliano, O. Khatib (editors), Springer Verlag, 2016, pp. 1907–1934.
  • 36D. Oetomo, D. Daney, J. Merlet.

    Design Strategy of Serial Manipulators With Certified Constraint Satisfaction, in: IEEE Transactions on Robotics, Feb 2009, vol. 25, no 1, pp. 1-11.

    http://dx.doi.org/10.1109/TRO.2008.2006867
  • 37A. Panchea.

    Inverse optimal control for redundant systems of biological motion, Orléans, December 2015.

    http://www.theses.fr/2015ORLE2050
  • 38R. Parasuraman, T. B. Sheridan, C. D. Wickens.

    A model for types and levels of human interaction with automation, in: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, May 2000, vol. 30, no 3, pp. 286–297.

    http://dx.doi.org/10.1109/3468.844354
  • 39L. Peternel, T. Petrič, E. Oztop, J. Babič.

    Teaching Robots to Cooperate with Humans in Dynamic Manipulation Tasks Based on Multi-modal Human-in-the-loop Approach, in: Autonomous Robots, January 2014, vol. 36, no 1-2, pp. 123–136.

    http://dx.doi.org/10.1007/s10514-013-9361-0
  • 40L. Peternel, N. Tsagarakis, D. Caldwell, A. Ajoudani.

    Robot adaptation to human physical fatigue in human–robot co-manipulation, in: Autonomous Robots, June 2018, vol. 42, no 5, pp. 1011–1021.

    http://dx.doi.org/10.1007/s10514-017-9678-1
  • 41J. Salotti, E. Ferreri, O. Ly, D. Daney.

    Classification des Systèmes Cobotiques, in: Ingénierie cognitique, 2018, vol. 1, no 1.

    http://dx.doi.org/10.21494/ISTE.OP.2018.0268
  • 42J. Salotti.

    Bayesian Network for the Prediction of Situation Awareness Errors, in: International Journal on Human Factors Modeling and Simulation, January 2018, vol. Special Issue on: Quantifying Human Factors Towards Analytical Human-in-the-Loop.
  • 43J. Savin, M. Gilles, C. Gaudez, V. Padois, P. Bidaud.

    Movement Variability and Digital Human Models: Development of a Demonstrator Taking the Effects of Muscular Fatigue into Account, in: Advances in Applied Digital Human Modeling and Simulation, Cham, V. G. Duffy (editor), Springer International Publishing, 2017, pp. 169–179.
  • 44J. Scholtz.

    Theory and Evaluation of Human Robot Interactions, in: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Washington, DC, USA, 2003.
  • 45T. B. Sheridan.

    Human–Robot Interaction: Status and Challenges, in: Human Factors, June 2016, vol. 58, no 4, pp. 525–532.

    http://dx.doi.org/10.1177/0018720816644364
  • 46M. Sonne, D. L. Villalta, D. M. Andrews.

    Development and evaluation of an office ergonomic risk checklist: ROSA - Rapid Office Strain Assessment, in: Applied Ergonomics, January 2012, vol. 43, no 1, pp. 98–108. [ DOI : 10.1016/j.apergo.2011.03.008 ]

    http://www.sciencedirect.com/science/article/pii/S0003687011000433
  • 47D. Srinivasan, S. E. Mathiassen.

    Motor variability in occupational health and performance, in: Clinical Biomechanics, 2012, vol. 27, no 10, pp. 979–993. [ DOI : 10.1016/j.clinbiomech.2012.08.007 ]

    http://www.sciencedirect.com/science/article/pii/S0268003312001817
  • 48C. Viegas, D. Daney, M. Tavakoli, A. T. de Almeida.

    Performance analysis and design of parallel kinematic machines using interval analysis, in: Mechanism and Machine Theory, 2017, vol. 115, pp. 218 - 236. [ DOI : 10.1016/j.mechmachtheory.2017.05.003 ]

    http://www.sciencedirect.com/science/article/pii/S0094114X17305700
  • 49S. Walther, T. Guhl.

    Classification of physical human-robot interaction scenarios to identify relevant requirements, in: Proceedings of the 41st International Symposium on Robotics, June 2014, pp. 1–8.
  • 50J. R. Wilson, S. Sharples.

    Evaluation of Human Work, Fourth Edition, CRC Press, April 2015, Google-Books-ID: uXB3CAAAQBAJ.
  • 51H. A. Yanco, J. Drury.

    Classifying human-robot interaction: an updated taxonomy, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, October 2004, vol. 3, pp. 2841–2846.

    http://dx.doi.org/10.1109/ICSMC.2004.1400763