Major publications by the team in recent years
  • 1D. Goldberg, S. H. K. Narayanan, L. Hascoët, J. Utke.

    An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem, in: Geoscientific Model Development, 2016, vol. 9, no 5, 27 p.

  • 2L. Hascoët.

    Adjoints by Automatic Differentiation, in: Advanced data assimilation for geosciences, Oxford University Press, 2014.

  • 3L. Hascoët, M. Vázquez, B. Koobus, A. Dervieux.

    A Framework for Adjoint-based Shape Design and Error Control, in: Computational Fluid Dynamics Journal, 2008, vol. 16, no 4, pp. 454-464.
  • 4L. Hascoët, V. Pascual.

    The Tapenade Automatic Differentiation tool: Principles, Model, and Specification, in: ACM Transactions On Mathematical Software, 2013, vol. 39, no 3.

  • 5L. Hascoët, J. Utke.

    Programming language features, usage patterns, and the efficiency of generated adjoint code, in: Optimization Methods and Software, 2016, vol. 31, pp. 885 - 903. [ DOI : 10.1080/10556788.2016.1146269 ]

  • 6J. C. Hueckelheim, L. Hascoët, J.-D. Müller.

    Algorithmic differentiation of code with multiple context-specific activities, in: ACM Transactions on Mathematical Software, 2016.

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 7É. Gauci.

    Goal-oriented metric-based mesh adaptation for unsteady CFD simulations involving moving geometries, Université Côte d’Azur, 2018.

Articles in International Peer-Reviewed Journals

  • 8V. Pascual, L. Hascoët.

    Mixed-language automatic differentiation, in: Optimization Methods and Software, February 2018, vol. 00, pp. 1 - 15. [ DOI : 10.1080/10556788.2018.1435650 ]


Other Publications

  • 9A. Belme, F. Alauzet, A. Dervieux.

    An a priori anisotropic Goal-Oriented Error Estimate for Viscous Compressible Flow and Application to Mesh Adaptation, November 2018, working paper or preprint.

  • 10A. Dervieux, E. Gauci, L. Frazza, A. Belme, A. Carabias, A. Loseille, F. Alauzet.

    Mesh-Anpassung für k-genaue Approximationen in CFD, November 2018, working paper or preprint.

  • 11E. Gauci, A. Belme, A. Carabias, A. Loseille, F. Alauzet, A. Dervieux.

    A priori error-based mesh adaptation in CFD, December 2018, working paper or preprint.

  • 12E. Itam, S. F. Wornom, B. Koobus, A. Dervieux.

    Combining a DDES model with a dynamic variational multiscale formulation, November 2018, working paper or preprint.

  • 13E. Itam, S. Wornom, B. Koobus, A. Dervieux.

    A Volume-agglomeration multirate time advancing for high Reynolds number flow simulation, November 2018, working paper or preprint.

References in notes
  • 14A. Aho, R. Sethi, J. Ullman.

    Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.
  • 15I. Attali, V. Pascual, C. Roudet.

    A language and an integrated environment for program transformations, Inria, 1997, no 3313.

  • 16B. Christianson.

    Reverse accumulation and implicit functions, in: Optimization Methods and Software, 1998, vol. 9, no 4, pp. 307–322.
  • 17D. Clément, J. Despeyroux, L. Hascoët, G. Kahn.

    Natural semantics on the computer, in: Proceedings, France-Japan AI and CS Symposium, ICOT, 1986, pp. 49-89, Also, Information Processing Society of Japan, Technical Memorandum PL-86-6. Also Inria research report # 416.

  • 18P. Cousot.

    Abstract Interpretation, in: ACM Computing Surveys, 1996, vol. 28, no 1, pp. 324-328.
  • 19B. Creusillet, F. Irigoin.

    Interprocedural Array Region Analyses, in: International Journal of Parallel Programming, 1996, vol. 24, no 6, pp. 513–546.
  • 20J. Gilbert.

    Automatic differentiation and iterative processes, in: Optimization Methods and Software, 1992, vol. 1, pp. 13–21.
  • 21M.-B. Giles.

    Adjoint methods for aeronautical design, in: Proceedings of the ECCOMAS CFD Conference, 2001.
  • 22A. Griewank, C. Faure.

    Reduced Gradients and Hessians from Fixed Point Iteration for State Equations, in: Numerical Algorithms, 2002, vol. 30(2), pp. 113–139.
  • 23A. Griewank.

    On stable piecewise linearization and generalized algorithmic differentiation, in: Optimization Methods and Software, 2013, vol. 28, no 6, pp. 1139–1178.

  • 24A. Griewank, A. Walther.

    Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd, SIAM, Other Titles in Applied Mathematics, 2008.
  • 25L. Hascoët.

    Transformations automatiques de spécifications sémantiques: application: Un vérificateur de types incremental, Université de Nice Sophia-Antipolis, 1987.
  • 26P. Hovland, B. Mohammadi, C. Bischof.

    Automatic Differentiation of Navier-Stokes computations, Argonne National Laboratory, 1997, no MCS-P687-0997.
  • 27E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, A. Khazendar.

    Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model), in: Cryosphere, 2014, vol. 8, no 6, pp. 2335-2351. [ DOI : 10.5194/tc-8-2335-2014 ]

  • 28F.-X. Le Dimet, O. Talagrand.

    Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, in: Tellus, 1986, vol. 38A, pp. 97-110.
  • 29B. Mohammadi.

    Practical application to fluid flows of automatic differentiation for design problems, in: Von Karman Lecture Series, 1997.
  • 30N. Rostaing.

    Différentiation Automatique: application à un problème d'optimisation en météorologie, université de Nice Sophia-Antipolis, 1993.
  • 31R. Rugina, M. Rinard.

    Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed Memory Regions, in: Proceedings of the ACM SIGPLAN'00 Conference on Programming Language Design and Implementation, ACM, 2000.