Section: Application Domains
Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too expensive, in particular for real-time simulations. When one wants to simulate the reaction of this complex system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is often called a reduced model.