EN FR
EN FR


Section: Highlights of the Year

Highlights of the Year

Turbulent flow simulations using Octrees

We have initially developed and tested a 3D first-order Octree code for unsteady incompressible Navier-Stokes equations for full windmill simulations with an LES model and wall laws. We have validated this code on Occigen for complex flows at increasing Reynolds numbers. This step implied identifying stable and feasible schemes compatible with the parallel linear Octree structure. The validation has been conducted with respect to the results of a fully Cartesian code (NaSCAR) that we run on Turing (with significantly more degrees of freedom) and with respect to experimental results.

Subsequently, we have developed a second-order Octree scheme that has been validated on Occigen for a sphere at a moderate Reynolds number ( Re =500), see Table 1. Then, for a cylinder at ( Re =140000) (Figures 5(a) and 5(b)), close to real applications, we have preliminary validation results for the second-order scheme with respect to experimental drag coefficient (Table 2). Additional resources will be asked on Occigen to complete the study.

Table 1. Flow past a sphere at Re =500. Results in the literature are spread between C D =0.48 and C D =0.52.
Mesh Δ x min number of cells CD (1st-order scheme) CD (2nd-order scheme)
1 0 . 094 0 . 72 · 10 5 N.A. 0 . 526
2 0 . 047 4 . 9 · 10 5 0 . 595 0 . 522
3 0 . 023 4 . 7 · 10 6 0 . 546 0 . 492
4 0 . 012 37 . 6 · 10 6 0 . 555 0 . 496
Table 2. Flow past a sphere at Re =14000.
Case C D
Octree, 1st-order scheme 1 . 007
Octree, 2nd-order scheme 1 . 157
Cartesian 1 . 188
Experimental estimate [31] 1 . 237
Figure 5. flow past a cylinder at Re =140000. Left: vorticity contour lines. Right: streamwise velocity section and grid for the second-order Octree scheme.
IMG/contour.png IMG/streamline_grid.png