EN FR
EN FR


Section: New Results

Results on Variability modeling and management

In general, we are currently exploring the use of machine learning for variability-intensive systems in the context of VaryVary ANR project https://varyvary.github.io.

Variability and testing.

The performance of software systems (such as speed, memory usage, correct identification rate) tends to be an evermore important concern, often nowadays on par with functional correctness for critical systems. Systematically testing these performance concerns is however extremely difficult, in particular because there exists no theory underpinning the evaluation of a performance test suite, i.e., to tell the software developer whether such a test suite is "good enough" or even whether a test suite is better than another one. This work [37] proposes to apply Multimorphic testing and empirically assess the effectiveness of performance test suites of software systems coming from various domains. By analogy with mutation testing, our core idea is to leverage the typical configurability of these systems, and to check whether it makes any difference in the outcome of the tests: i.e., are some tests able to "kill" underperforming system configurations? More precisely, we propose a framework for defining and evaluating the coverage of a test suite with respect to a quantitative property of interest. Such properties can be the execution time, the memory usage or the success rate in tasks performed by a software system. This framework can be used to assess whether a new test case is worth adding to a test suite or to select an optimal test suite with respect to a property of interest. We evaluate several aspects of our proposal through 3 empirical studies carried out in different fields: object tracking in videos, object recognition in images, and code generators.

Variability, sampling, and SAT.

Uniform or near-uniform generation of solutions for large satisfiability formulas is a problem of theoretical and practical interest for the testing community. Recent works proposed two algorithms (namely UniGen and QuickSampler) for reaching a good compromise between execution time and uniformity guarantees, with empirical evidence on SAT benchmarks. In the context of highly-configurable software systems (e.g., Linux), it is unclear whether UniGen and QuickSampler can scale and sample uniform software configurations. We perform a thorough experiment on 128 real-world feature models. We find that UniGen is unable to produce SAT solutions out of such feature models. Furthermore, we show that QuickSampler does not generate uniform samples and that some features are either never part of the sample or too frequently present. Finally, using a case study, we characterize the impacts of these results on the ability to find bugs in a configurable system. Overall, our results suggest that we are not there: more research is needed to explore the cost-effectiveness of uniform sampling when testing large configurable systems. More details [51]. In general, we are investigating sampling algorithms for cost-effectively exploring configuration spaces (see also  [63], [67].

Variability and 3D printing.

Configurators rely on logical constraints over parameters to aid users and determine the validity of a configuration. However, for some domains, capturing such configuration knowledge is hard, if not infeasible. This is the case in the 3D printing industry, where parametric 3D object models contain the list of parameters and their value domains, but no explicit constraints. This calls for a complementary approach that learns what configurations are valid based on previous experiences. In this work [41], we report on preliminary experiments showing the capability of state-of-the-art classification algorithms to assist the configuration process. While machine learning holds its promises when it comes to evaluation scores, an in-depth analysis reveals the opportunity to combine the classifiers with constraint solvers.

Variability and video processing.

In an industrial project [24], we addressed the challenge of developing a software-based video generator such that consumers and providers of video processing algorithms can benchmark them on a wide range of video variants. We have designed and developed a variability modeling language, called VM, resulting from the close collaboration with industrial partners during two years. We expose the specific requirements and advanced variability constructs we developed and used to characterize and derive variations of video sequences. The results of our experiments and industrial experience show that our solution is effective to model complex variability information and supports the synthesis of hundreds of realistic video variants. From the software language perspective, we learned that basic variability mechanisms are useful but not enough; attributes and multi-features are of prior importance; meta-information and specific constructs are relevant for scalable and purposeful reasoning over variability models. From the video domain and software perspective, we report on the practical benefits of a variability approach. With more automation and control, practitioners can now envision benchmarking video algorithms over large, diverse, controlled, yet realistic datasets (videos that mimic real recorded videos) – something impossible at the beginning of the project.

Variability and adversarial machine learning

Software product line engineers put a lot of effort to ensure that, through the setting of a large number of possible configuration options, products are acceptable and well-tailored to customers’ needs. Unfortunately, options and their mutual interactions create a huge configuration space which is intractable to exhaustively explore. Instead of testing all products, machine learning is increasingly employed to approximate the set of acceptable products out of a small training sample of configurations. Machine learning (ML) techniques can refine a software product line through learned constraints and a priori prevent non-acceptable products to be derived. In this work [53], we use adversarial ML techniques to generate adver- sarial configurations fooling ML classifiers and pinpoint incorrect classifications of products (videos) derived from an industrial video generator. Our attacks yield (up to) a 100% misclassification rate and a drop in accuracy of 5%. We discuss the implications these results have on SPL quality assurance.

Variability, Linux and machine learning

Given a configuration, can humans know in advance the build status, the size, the compilation time, or the boot time of a Linux kernel? Owing to the huge complexity of Linux (there are more than 15000 options with hard constraints and subtle interactions), machines should rather assist contributors and integrators in mastering the configuration space of the kernel. We have developed TuxML https://github.com/TuxML/ an open-source tool based on Docker/Python to massively gather data about thousands of kernel configurations. 200K+ configurations have been automatically built and we show how machine learning can exploit this information to predict properties of unseen Linux configurations, with different use cases (identification of influential/buggy options, finding of small kernels, etc.) The vision is that a continuous understanding of the configuration space is undoubtedly beneficial for the Linux community, yet several technical challenges remain in terms of infrastructure and automation.

Two preprints are available [62] and  [49].

A talk has been given at Embedded Linux Conference Europe 2019 (co-located with Open Source Summit 2019) in Lyon about “Learning the Linux Kernel Configuration Space: Results and Challenges” [54].

Variability and machine learning

We gave a tutorial [49] at SPLC 2019 and introduce how machine learning can be used to support activities related to the engineering of configurable systems and software product lines. To the best of our knowledge, this is the first practical tutorial in this trending field. The tutorial is based on a systematic literature review [67] and includes practical tasks (specialization, performance prediction) on real-world systems (VaryLaTeX, x264).