EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1V. Guinot, C. Delenne, A. Rousseau, O. Boutron.

    Flux closures and source term models for shallow water models with depth-dependent integral porosity, in: Advances in Water Resources, September 2018, vol. 122, pp. 1-26. [ DOI : 10.1016/j.advwatres.2018.09.014 ]

    https://hal.archives-ouvertes.fr/hal-01884110
Publications of the year

Articles in International Peer-Reviewed Journals

  • 2J.-N. Bacro, C. Gaetan, T. Opitz, G. Toulemonde.

    Hierarchical Space-Time Modeling of Asymptotically Independent Exceedances With an Application to Precipitation Data, in: Journal of the American Statistical Association, June 2019, pp. 1-26. [ DOI : 10.1080/01621459.2019.1617152 ]

    https://hal.inria.fr/hal-02417285
  • 3J. G. Caldas Steinstraesser, G. Kemlin, A. Rousseau.

    A domain decomposition method for linearized Boussinesq-type equations, in: Journal of Mathematical Study, 2019, pp. 1 - 22.

    https://hal.inria.fr/hal-01797823
  • 4N. Chahinian, C. Delenne, B. Commandré, M. Derras, L. Deruelle, J.-S. Bailly.

    Automatic mapping of urban wastewater networks based on manhole cover locations, in: Computers, Environment and Urban Systems, 2019, vol. 78, 101370 p. [ DOI : 10.1016/j.compenvurbsys.2019.101370 ]

    https://hal.archives-ouvertes.fr/hal-02275903
  • 5P. Finaud-Guyot, P.-A. Garambois, G. Dellinger, F. Lawniczak, P. François.

    Experimental characterization of various scale hydraulic signatures in a flooded branched street network, in: Urban Water Journal, 2020, forthcoming. [ DOI : 10.1080/1573062X.2020.1713173 ]

    https://hal.archives-ouvertes.fr/hal-02381013

Scientific Books (or Scientific Book chapters)

  • 6G. Toulemonde, J. Carreau, V. Guinot.

    Space-time simulations of extreme rainfall : why and how ?, in: Mathematical Modeling of Random and Deterministic Phenomena, S. M. Manou-Abi, S. Dabo-Niang, J.-J. Salone (editors), Wiley, January 2020.

    https://hal.inria.fr/hal-02427188

Internal Reports

  • 7F. Berthoud, P. Guitton, L. Lefèvre, S. Quinton, A. Rousseau, J. Sainte-Marie, C. Serrano, J.-B. Stefani, P. Sturm, E. A. Tannier.

    Sciences, Environnements et Sociétés : Rapport long du groupe de travail MakeSEnS d’Inria, Inria, October 2019.

    https://hal.inria.fr/hal-02340948

Scientific Popularization

  • 8C. Mokrani, M. Bossy, M. Di Iorio, A. Rousseau.

    Numerical Modelling of Hydrokinetic Turbines Immersed in Complex Topography using Non-Rotative Actuator Discs, in: Three Years Promoting the Development of Marine Renewable Energy in Chile 2015 - 2018, MERIC-Marine Energy and Innovation Center, 2019.

    https://hal.inria.fr/hal-01966351

Other Publications

  • 9J. Carreau, G. Toulemonde.

    Extra-Parametrized Extreme Value Copula : Extension to a Spatial Framework, December 2019, working paper or preprint.

    https://hal.inria.fr/hal-02419118
  • 10V. Guinot, J. G. Caldas Steinstraesser, A. Rousseau.

    Discussion on 'Dam break in rectangular channels with different upstream-downstream widths', January 2020, working paper or preprint.

    https://hal.inria.fr/hal-02426968
  • 11F. Palacios-Rodríguez, G. Toulemonde, J. Carreau, T. Opitz.

    Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses, December 2019, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-02136681
  • 12F. Palacios-Rodríguez, G. Toulemonde, J. Carreau, T. Opitz.

    Stochastic extreme rainfall simulations around Montpellier, November 2019, 8èmes journées scientifiques du LabEx NUMEV, Poster.

    https://hal.inria.fr/hal-02417687
References in notes
  • 13J. N. Bacro, C. Gaetan, G. Toulemonde.

    A flexible dependence model for spatial extremes, in: Journal of Statistical Planning and Inference, 2016, vol. 172, pp. 36–52.
  • 14S. Barbier, A. Rapaport, A. Rousseau.

    Modelling of biological decontamination of a water resource in natural environment and related feedback strategies, in: Journal of Scientific Computing, 2016, vol. 68(3), pp. 1267-1280.
  • 15A. Baxevani, J. Lennatsson.

    A spatiotemporal precipitation generator based on a censored latent Gaussian field, in: Water Resour. Res., 2015, vol. 51, pp. 4338-4358.
  • 16J.-P. Bernard, E. Frénod, A. Rousseau.

    Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, February 2015, vol. 8, no 1, pp. 45-54. [ DOI : 10.3934/dcdss.2015.8.45 ]

    https://hal.archives-ouvertes.fr/hal-00833340
  • 17E. Blayo, A. Rousseau.

    About Interface Conditions for Coupling Hydrostatic and Nonhydrostatic Navier-Stokes Flows, in: Discrete and Continuous Dynamical Systems - Series S, 2015, 10 p.

    https://hal.inria.fr/hal-01185255
  • 18S. Caires, L. de Haan, R. L. Smith.

    On the determination of the temporal and spatial evolution of extreme events, Deltares, 2011, report 1202120-001-HYE-004 (for Rijkswaterstaat, Centre for Water Management).
  • 19R. Chailan, F. Bouchette, C. Dumontier, O. Hess, A. Laurent, O. Lobry, H. Michaud, S. Nicoud, G. Toulemonde.

    High performance pre-computing: Prototype application to a coastal flooding decision tool, in: Knowledge and Systems Engineering (KSE), 2012 Fourth International Conference on, IEEE, 2012, pp. 195–202.
  • 20R. Chailan.

    Application of Scientific Computing and Statistical Analysis to Address Coastal Hazards, University of Montpellier, 2015.
  • 21R. Chailan, G. Toulemonde, J.-N. Bacro.

    A semiparametric method to simulate bivariate space–time extremes, in: Ann. Appl. Stat., 2017, vol. 11, no 3, pp. 1403–1428.

    https://doi.org/10.1214/17-AOAS1031
  • 22R. Chailan, G. Toulemonde, F. Bouchette, A. Laurent, F. Sevault, H. Michaud.

    Spatial assessment of extreme significant waves heights in the Gulf of Lions, in: Coastal Engineering Proceedings, 2014, vol. 1, no 34, 17 p.
  • 23H. Chen, A. Cohn.

    Buried Utility Pipeline Mapping Based on Multiple Spatial Data Sources: A Bayesian Data Fusion Approach, in: IJCAI-11, Barcelona, Spain, 2011, pp. 2411-2417.
  • 24R. A. Davis, C. Klüppelberg, C. Steinkohl.

    Max-stable processes for modeling extremes observed in space and time, in: Journal of the Korean Statistical Society, 2013, vol. 42, pp. 399–414.
  • 25R. A. Davis, C. Klüppelberg, C. Steinkohl.

    Statistical inference for max-stable processes in space and time, in: Journal of the Royal Statistical Society, 2013, vol. 75, pp. 791–819.
  • 26A. C. Davison, M. M. Gholamrezaee.

    Geostatistics of extremes, in: Proceedings of the Royal Society London, Series A, 2012, vol. 468, pp. 581-608.
  • 27A. C. Davison, R. Huser, E. Thibaud.

    Geostatistics of dependent and asymptotically independent extremes, in: Journal of Mathematical Geosciences, 2013, vol. 45, pp. 511–529.
  • 28A. C. Davison, S. A. Padoan, M. Ribatet.

    Statistical modelling of spatial extremes, in: Statistical Science, 2012, vol. 27, pp. 161-186.
  • 29A. Defina.

    Two-dimensional shallow flow equations for partially dry areas, in: Water Resour. Res., 2000, vol. 36, no 11, 3251 p.

    http://dx.doi.org/10.1029/2000WR900167
  • 30C. Delenne, J.-S. Bailly, M. Dartevelle, N. Marcy, A. Rousseau.

    Combining punctual and ordinal contour data for accurate floodplain topography mapping (poster and 8p. paper), in: Spatial accuracy: International symposium on "Spatial Accuracy Assessment in Natural Resources and Environmental Sciences", Montpellier (France), J.-S. Bailly, D. Griffith, D. Josselin (editors), 5-8 July 2016.
  • 31A. Ferrari, R. Vacondio, S. Dazzi, P. Mignosa.

    A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem, in: Adv. Water Resour., 2017, vol. 107, pp. 233-249.

    http://dx.doi.org/10.1016/j.advwatres.2017.06.023
  • 32A. Ferreira, L. de Haan.

    The generalized Pareto process; with a view towards application and simulation, in: Bernoulli, 2014, vol. 20, no 4, pp. 1717–1737.

    https://doi.org/10.3150/13-BEJ538
  • 33P. Franks.

    A flexible dependence model for spatial extremes, in: Limnol. Oceanogr., 1997.
  • 34E. Frénod, A. Rousseau.

    Paralic Confinement: Models and Simulations, in: Acta Appl Math, January 2013, vol. 123, no 1, pp. 1–19.
  • 35L. Giustarini, R. Hostache, M. Kavetski, G. Corato, S. Schlaffer, P. Matgen.

    Probabilistic flood mapping using synthetic aperture radar data, in: IEEE Trans. Geosci. Remote Sens., 2016, vol. 54, no 12, pp. 6958-6969.
  • 36A. Green, P. Naghdi.

    A derivation of equations for wave propagation in water of variable depth, in: J. Fluid Mech., 1976, vol. 2, pp. 237–246.
  • 37J. Groeneweg, S. Caires, K. Roscoe.

    Temporal and Spatial Evolution of Extreme Events, in: Coastal Engineering Proceedings, 2012, vol. 1, no 33, 9 p.
  • 38V. Guinot, C. Delenne.

    Macroscopic modelling of urban floods, in: La Houille Blanche, 2014, vol. 6, pp. 19–25.
  • 39V. Guinot.

    Multiple porosity shallow water models for macroscopic modelling of urban floods, in: Adv. Water Resour., 2012, vol. 37, pp. 40–72.

    http://dx.doi.org/10.1016/j.advwatres.2011.11.002
  • 40V. Guinot, B. F. Sanders, J. E. Schubert.

    A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations, in: Advances in Water Resources, 2017, vol. 109, pp. 133-157.
  • 41V. Guinot, B. F. Sanders, J. E. Schubert.

    Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to grid design, in: Advances in Water Resources, 2017, vol. 107, pp. 34-55.
  • 42V. Guinot, B. F. Sanders, J. E. Schubert.

    Dual integral porosity shallow water model for urban flood modelling, in: Advances in Water Resources, 2017, vol. 103, pp. 16-31.
  • 43V. Guinot, S. Soares-Frazão.

    Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, in: Int. J. Numer. Methods Fluids, 2006, vol. 50, no 3, pp. 309–345.

    http://dx.doi.org/10.1002/fld.1059
  • 44R. Huser, A. C. Davison.

    Space-time modelling of extreme events, in: Journal of the Royal Statistical Society: Series B, 2014, vol. 76, pp. 439–461.
  • 45R. Huser, T. Opitz, E. Thibaud.

    Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures, in: Spat. Stat., 2017, vol. 21, no part A, pp. 166–186.

    https://doi.org/10.1016/j.spasta.2017.06.004
  • 46Z. Kabluchko, M. Schlather, L. de Haan.

    Stationary max-stable fields associated to negative definite functions, in: The Annals of Probability, 2009, pp. 2042–2065.
  • 47E. Kergosien, H. Alatrista-Salas, M. Gaio, F. Güttler, M. Roche, M. Teisseire.

    When Textual Information Becomes Spatial Information Compatible with Satellite Images, in: KDIR, 2015, pp. 301-306.
  • 48B. Kim, B. F. Sanders, J. S. Famiglietti, V. Guinot.

    Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity, in: J. Hydrol., 2015, vol. 523, pp. 680–692.

    http://dx.doi.org/10.1016/j.jhydrol.2015.01.059
  • 49D. Lannes, P. Bonneton.

    Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, in: Physics of Fluids, 2009, vol. 21, 016601 doi:10.1063/1.3053183.
  • 50E. Leblois, J. D. Creutin.

    Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method, in: Water Resources Research, 2013, vol. 49(6), pp. 3375-3387.
  • 51C. Lucas, A. Rousseau.

    New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-Geostrophic Equations, in: Multiscale Modeling and Simulations, 2008, vol. 7, no 2, pp. 793–813.

    http://hal.inria.fr/inria-00180921
  • 52P. Naveau, R. Huser, P. Ribereau, A. Hannart.

    Modeling jointly low, moderate and heavy rainfall intensities without a threshold selection, in: Water Resour. Res., 2016, vol. 52.
  • 53A. Ogilvie, G. Belaud, C. Delenne, J.-C. Bader, A. Oleksiak, J.-S. Bailly, L. Ferry, D. Martin.

    Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data, in: Journal of Hydrology, 2015, vol. 523, pp. 358-383.

    http://dx.doi.org/10.1016/j.jhydrol.2015.01.036
  • 54T. Opitz.

    Extremal t processes: elliptical domain of attraction and a spectral representation, in: J. Multivariate Anal., 2013, vol. 122, pp. 409–413.

    https://doi.org/10.1016/j.jmva.2013.08.008
  • 55T. Opitz.

    Modeling asymptotically independent spatial extremes based on Laplace random fields, in: Spat. Stat., 2016, vol. 16, pp. 1–18.

    https://doi.org/10.1016/j.spasta.2016.01.001
  • 56J. Pasquet, T. Desert, O. Bartoli, M. Chaumont, C. Delenne, G. Subsol, M. Derras, N. Chahinian.

    Detection of manhole covers in high-resolution aerial images of urban areas by combining two methods, in: IEEE J. Sel. Top. Appl. earth Obs. Remote Sens., 2016, vol. 9, no 5, pp. 1802–1807.

    http://dx.doi.org/10.1109/JSTARS.2015.2504401
  • 57C. Rogers, T. Hao, S. Costello, M. Burrow, N. Metje, D. Chapman, ..., A. Saul.

    Condition assessment of the buried utility service infrastructure: a proposal for integration, in: Tunnelling and Underground Space Technology, 2012, vol. 28, pp. 202-211.
  • 58R. Salmon.

    Lectures on geophysical fluid dynamics, Oxford University Press, New York, 1998, xiv+378 p.
  • 59B. F. Sanders, J. E. Schubert, H. A. Gallegos.

    Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling, in: J. Hydrol., 2008, vol. 362, no 1-2, pp. 19–38.

    http://dx.doi.org/10.1016/j.jhydrol.2008.08.009
  • 60M. Schlather.

    Models for stationary max-stable random fields, in: Extremes, 2002, vol. 5, no 1, pp. 33–44.
  • 61R. L. Smith.

    Max-stable processes and spatial extremes, in: Unpublished manuscript, Univer, 1990.
  • 62S. Soares-Frazão, J. Lhomme, V. Guinot, Y. Zech.

    Two-dimensional shallow-water model with porosity for urban flood modelling, in: J. Hydraul. Res., 2008, vol. 46, no July 2015, pp. 45–64.

    http://dx.doi.org/10.1080/00221686.2008.9521842
  • 63V. Soti, A. Tran, J.-S. Bailly, C. Puech, D. Seen, A. Bégué.

    Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas, in: International Journal of Applied Earth Observation and Geoinformation, 2009, vol. 11, no 5, pp. 344-351.
  • 64E. Thibaud, R. Mutzner, A. C. Davison.

    Threshold modeling of extreme spatial rainfall, in: Water Resources Research, 2013, vol. 49, pp. 4633–4644.
  • 65E. Thibaud, T. Opitz.

    Efficient inference and simulation for elliptical Pareto processes, in: Biometrika, 2015, vol. 102, no 4, pp. 855–870.

    https://doi.org/10.1093/biomet/asv045
  • 66H. L. Tolman.

    User Manual and System Documentation of WAVEWATCH III® version 4.18, Technical note, MMAB Contribution, 2014, no 316.
  • 67G. Toulemonde, P. Ribereau, P. Naveau.

    Applications of Extreme Value Theory to Environmental Data Analysis, in: Extreme Events: Observations, Modeling, and Economics (Geophysical Monograph Series), M. Chavez, M. Ghil, J. Fucugauchi (editors), Wiley-Blackwell, 2015, in press.
  • 68M. Velickovic, Y. Zech, S. Soares-Frazão.

    Steady-flow experiments in urban areas and anisotropic porosity model, in: J. Hydraul. Res., jan 2017, vol. 55, no 1, pp. 85–100.

    https://www.tandfonline.com/doi/full/10.1080/00221686.2016.1238013
  • 69D. Viero, M. Mohammad Valipour.

    Modeling anisotropy in free-surface overland and shallow inundation flows, in: Adv. Water Resour., jan 2017, vol. 104, no 1, pp. 1–14.

    https://www.tandfonline.com/doi/full/10.1080/00221686.2016.1238013
  • 70M. Vrac, P. Naveau, P. Drobinski.

    Modeling pairwise dependencies in precipitation intensities, in: Nonlinear Processes in Geophysics, 2007, vol. 14(6), pp. 789-797.
  • 71J. Wadsworth, J. Tawn.

    Dependence modelling for spatial extremes, in: Biometrika, 2012, vol. 99, pp. 253-272.
  • 72M. Wood, R. Hostache, J. Neal, T. Wagener, L. Giustarini, M. Chini, G. Corato, P. Matgen, P. Bates.

    Calibration of channel depth and friction parameters in the Lisflood-FP hydraulic model using medium resolution SAR data and identifiability techniques, in: Hydrol. Earth Syst. Sci, 2016, vol. 20, pp. 4983-4997.
  • 73I. Özgen, D. Liang, R. Hinkelmann.

    Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography, in: Appl. Math. Model., 2016, vol. 40, no 17-18, pp. 7447–7473.

    http://dx.doi.org/10.1016/j.apm.2015.12.012
  • 74I. Özgen, J. Zhao, D. Liang, R. Hinkelmann.

    Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity, in: J. Hydrol., 2016, vol. 541, pp. 1165–1184.

    http://dx.doi.org/10.1016/j.jhydrol.2016.08.025