EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1E. Abbate, A. Iollo, G. Puppo.

    An all-speed relaxation scheme for gases and compressible materials, in: Journal of Computational Physics, 2017, vol. 351, pp. 1-24. [ DOI : 10.1016/j.jcp.2017.08.052 ]

    https://hal.inria.fr/hal-01586863
  • 2M. Bergmann, C.-H. Bruneau, A. Iollo.

    Enablers for robust POD models, in: Journal of Computational Physics, 2009, vol. 228, no 2, pp. 516–538.
  • 3M. Bergmann, J. Hovnanian, A. Iollo.

    An accurate cartesian method for incompressible flows with moving boundaries, in: Communications in Computational Physics, 2014, vol. 15, no 5, pp. 1266–1290.
  • 4M. Bergmann, A. Iollo.

    Modeling and simulation of fish-like swimming, in: Journal of Computational Physics, 2011, vol. 230, no 2, pp. 329 - 348.
  • 5M. Bergmann, A. Iollo.

    Bioinspired swimming simulations, in: Journal of Computational Physics, 2016, vol. 323, pp. 310 - 321.
  • 6F. Bernard, A. Iollo, G. Puppo.

    Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids, in: Journal of Scientific Computing, 2015, 34 p.
  • 7A. Bouharguane, A. Iollo, L. Weynans.

    Numerical solution of the Monge–Kantorovich problem by density lift-up continuation, in: ESAIM: Mathematical Modelling and Numerical Analysis, November 2015, vol. 49, no 6, 1577.
  • 8A. De Brauer, A. Iollo, T. Milcent.

    A Cartesian Scheme for Compressible Multimaterial Models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143.
  • 9F. Luddens, M. Bergmann, L. Weynans.

    Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675.
  • 10T. Meuel, Y. L. Xiong, P. Fischer, C.-H. Bruneau, M. Bessafi, H. Kellay.

    Intensity of vortices: from soap bubbles to hurricanes, in: Scientific Reports, December 2013, vol. 3, pp. 3455 (1-7).
  • 11Y. L. Xiong, C.-H. Bruneau, H. Kellay.

    A numerical study of two dimensional flows past a bluff body for dilute polymer solutions, in: Journal of Non-Newtonian Fluid Mechanics, 2013, vol. 196, pp. 8-26.
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 13E. Abbate, A. Iollo, G. Puppo.

    An asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity, in: SIAM Journal on Scientific Computing, September 2019.

    https://hal.archives-ouvertes.fr/hal-02373325
  • 14E. Abbate, A. Iollo, G. Puppo.

    An implicit scheme for moving walls and multi-material interfaces in weakly compressible materials, in: Communications in Computational Physics, January 2020.

    https://hal.archives-ouvertes.fr/hal-02373329
  • 15S. Avgerinos, F. Bernard, A. Iollo, G. Russo.

    Linearly implicit all Mach number shock capturing schemes for the Euler equations, in: Journal of Computational Physics, 2019. [ DOI : 10.1016/j.jcp.2019.04.020 ]

    https://hal.inria.fr/hal-02419411
  • 16F. Bernard, A. Iollo, G. Puppo.

    BGK Polyatomic Model for Rarefied Flows, in: Journal of Scientific Computing, March 2019, vol. 78, no 3, pp. 1893-1916. [ DOI : 10.1007/s10915-018-0864-x ]

    https://hal.inria.fr/hal-02419447
  • 17M. G. Carlino, P. Ricka, M. S. Phan, S. Bertoluzza, M. Pennacchio, G. Patanè, M. Spagnuolo.

    Geometry description and mesh construction from medical imaging, in: ESAIM: Proceedings and Surveys, 2019, vol. 2019, pp. 1 - 10, forthcoming.

    https://hal.inria.fr/hal-02072342
  • 18A. Ferrero, A. Iollo, F. Larocca.

    Reduced order modelling for turbomachinery shape design, in: International Journal of Computational Fluid Dynamics, November 2019, pp. 1-12. [ DOI : 10.1080/10618562.2019.1691722 ]

    https://hal.inria.fr/hal-02403455
  • 19M. Jedouaa, C.-H. Bruneau, E. Maitre.

    An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid, in: Journal of Computational Physics, February 2019, vol. 378, pp. 143-177. [ DOI : 10.1016/j.jcp.2018.11.006 ]

    https://hal.archives-ouvertes.fr/hal-01236468
  • 20T. Taddei.

    An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces, in: Advances in Computational Mathematics, September 2019. [ DOI : 10.1007/s10444-019-09721-w ]

    https://hal.archives-ouvertes.fr/hal-02369312

Invited Conferences

  • 21M. Bergmann, A. Iollo.

    Sampling and clustering on the POD-Grassmann manifold, in: CSE19 - SIAM Conference on Computational Science and Engineering, Spokane, United States, February 2019.

    https://hal.inria.fr/hal-02424383
  • 22M. Bergmann, A. Iollo, S. Riffaud, A. Ferrero, A. Scardigli, E. Lombardi, H. Telib.

    Reduced-Order Models: Convergence Between Data and Simulation, in: CSE19 - SIAM Conference on Computational Science and Engineering, Spokane, United States, February 2019.

    https://hal.inria.fr/hal-02424387

International Conferences with Proceedings

  • 23A. Ferrero, A. Iollo, F. Larocca.

    RANS closure approximation by artificialneural networks, in: ETC 2019 - 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Lausanne, Switzerland, April 2019.

    https://hal.inria.fr/hal-02403432

Conferences without Proceedings

  • 24M. Bergmann, A. Fondanèche, A. Iollo.

    AMR enabled quadtree discretization of incompressible Navier-Stokes equations with moving boundaries, in: International Congress on Industrial and Applied Mathematics (ICIAM) 2019, Valencia, Spain, July 2019.

    https://hal.inria.fr/hal-02421748

Other Publications

References in notes
  • 27P. Angot, C.-H. Bruneau, P. Fabrie.

    A penalization method to take into account obstacles in a incompressible flow, in: Numerische Mathematik, 1999, vol. 81, no 4, pp. 497-520.
  • 28S. Bagheri.

    Koopman-mode decomposition of the cylinder wake, in: Journal of Fluid Mechanics, 2013.
  • 29P. Barton, D. Drikakis, E. Romenski, V. Titarev.

    Exact and approximate solutions of Riemann problems in non-linear elasticity, in: Journal of Computational Physics, 2009, vol. 228, no 18, pp. 7046-7068.
  • 30M. Bergmann, C.-H. Bruneau, A. Iollo.

    Enablers for robust POD models, in: Journal of Computational Physics, 2009, vol. 228, no 2, pp. 516–538.
  • 31M. Bergmann, A. Ferrero, A. Iollo, E. Lombardi, A. Scardigli, H. Telib.

    A zonal Galerkin-free POD model for incompressible flows, in: Journal of Computational Physics, 2018, vol. 352, pp. 301–325.
  • 32A. Bouharguane, A. Iollo, L. Weynans.

    Numerical solution of the Monge-Kantorovich problem by density lift-up continuation, in: ESAIM: M2AN, 2015, vol. 49, no 6, pp. 1577-1592.
  • 33A. D. Brauer, A. Iollo, T. Milcent.

    A Cartesian scheme for compressible multimaterial models in 3D, in: Journal of Computational Physics, 2016, vol. 313, pp. 121-143. [ DOI : 10.1016/j.jcp.2016.02.032 ]

    http://www.sciencedirect.com/science/article/pii/S0021999116000966
  • 34B. Cantwell, D. Coles.

    An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, in: Journal of fluid mechanics, 1983, vol. 136, pp. 321–374.
  • 35L. Cordier, M. Bergmann.

    Two typical applications of POD: coherent structures eduction and reduced order modelling, in: Lecture series 2002-04 on post-processing of experimental and numerical data, Von Kármán Institute for Fluid Dynamics, 2002.
  • 36S. Gavrilyuk, N. Favrie, R. Saurel.

    Modelling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, no 5, pp. 2941-2969.
  • 37S. Godunov.

    Elements of continuum mechanics, Nauka Moscow, 1978.
  • 38X. Jin.

    Construction d'une chaîne d'outils numériques pour la conception aérodynamique de pales d'éoliennes, Université de Bordeaux, 2014.
  • 39B. Lambert, L. Weynans, M. Bergmann.

    Local lubrication model for spherical particles within incompressible Navier-Stokes flows, in: Phys. Rev. E, Mar 2018, vol. 97, 033313 p.

    https://link.aps.org/doi/10.1103/PhysRevE.97.033313
  • 40F. Luddens, M. Bergmann, L. Weynans.

    Enablers for high-order level set methods in fluid mechanics, in: International Journal for Numerical Methods in Fluids, December 2015, vol. 79, pp. 654-675. [ DOI : 10.1002/fld.4070 ]
  • 41J. Lumley, A. Yaglom, V. Tatarski.

    Atmospheric turbulence and wave propagation, in: The structure of inhomogeneous turbulence, AM Yaglom & VI Tatarski, 1967, pp. 166–178.
  • 42I. Mezić.

    Spectral Properties of Dynamical Systems, Model Reduction and Decompositions, in: Nonlinear Dynamics, 2005, vol. 41, no 1. [ DOI : 10.1007/s11071-005-2824-x ]
  • 43G. Miller, P. Colella.

    A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing, in: Journal of Computational Physics, 2002, vol. 183, no 1, pp. 26-82.
  • 44R. Mittal, G. Iaccarino.

    Immersed boundary methods, in: Annu. Rev. Fluid Mech., 2005, vol. 37, pp. 239-261.
  • 45P. J. Schmid.

    Dynamic mode decomposition of numerical and experimental data, in: Journal of Fluid Mechanics, 008 2010, vol. 656, pp. 5-28. [ DOI : 10.1017/S0022112010001217 ]
  • 46J. A. Sethian.

    Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK, 1999.
  • 47L. Sirovich.

    Turbulence and the dynamics of coherent structures, in: Quarterly of Applied Mathematics, 1987, vol. XLV, no 3, pp. 561-590.
  • 48T. Taddei.

    A registration method for model order reduction: data compression and geometry reduction, in: arXiv preprint arXiv:1906.11008, 2019.
  • 49K. Taira, T. Colonius.

    The immersed boundary method: a projection approach, in: Journal of Computational Physics, 2007, vol. 225, no 2, pp. 2118-2137.
  • 50C. Villani.

    Topics in optimal transportation, 1st, American Mathematical Society, 2003.