EN FR
EN FR


Section: Application Domains

Fidelity of Virtual Reality

VR is a powerful tool for perception-action experiments. VR-based experimental platforms allow exposing a population to fully controlled stimuli that can be repeated from trial to trial with high accuracy. Factors can be isolated and objects manipulations (position, size, orientation, appearance, ..) are easy to perform. Stimuli can be interactive and adapted to participants’ responses. Such interesting features allow researchers to use VR to perform experiments in sports, motion control, perceptual control laws, spatial cognition as well as person-person interactions. However, the interaction loop between users and their environment differs in virtual conditions in comparison with real conditions. When a user interact in an environment, movement from action and perception are closely related. While moving, the perceptual system (vision, proprioception,..) provides feedback about the users’ own motion and information about the surrounding environment. That allows the user to adapt his/her trajectory to sudden changes in the environment and generate a safe and efficient motion. In virtual conditions, the interaction loop is more complex because it involves several material aspects.

First, the virtual environment is perceived through a numerical display which could affect the available information and thus could potentially introduce a bias. For example, studies observed a distance compression effect in VR, partially explained by the use of Head Mounted Display with reduced field of view and exerting a weight and torques on the user’s head. Similarly, the perceived velocity in a VR environment differs from the real world velocity, introducing an additional bias. Other factors, such as the image contrast, delays in the displayed motion and the point of view can also influence efficiency in VR. The second point concerns the user’s motion in the virtual world. The user can actually move if the virtual room is big enough or if wearing a head mounted display. Even with a real motion, authors showed that walking speed is decreased, personal space size is modified and navigation in VR is performed with increased gait instability. Although natural locomotion is certainly the most ecological approach, the physical limited size of VR setups prevents from using it most of the time. Locomotion interfaces are therefore required. Locomotion interfaces are made up of two components, a locomotion metaphor (device) and a transfer function (software), that can also introduce bias in the generated motion. Indeed, the actuating movement of the locomotion metaphor can significantly differ from real walking and the simulated motion depends on the transfer function applied. Locomotion interfaces cannot usually preserve all the sensory channels involved in locomotion.

When studying human behavior in VR, the aforementioned factors in the interaction loop potentially introduce bias both in the perception and in the generation of motor behavior trajectories. MimeTIC is working on the mandatory step of VR validation to make it usable for capturing and analyzing human motion.