Bibliography
Major publications by the team in recent years
-
1P. Alquier, B. Guedj.
Simpler PAC-Bayesian Bounds for Hostile Data, in: Machine Learning, 2018. [ DOI : 10.1007/s10994-017-5690-0 ]
https://hal.inria.fr/hal-01385064 -
2P. Bathia, S. Iovleff, G. Govaert.
An R Package and C++ library for Latent block models: Theory, usage and applications, in: Journal of Statistical Software, 2016.
https://hal.archives-ouvertes.fr/hal-01285610 -
3C. Biernacki, A. Lourme.
Unifying Data Units and Models in (Co-)Clustering, in: Advances in Data Analysis and Classification, May 2018, vol. 12, no 41.
https://hal.archives-ouvertes.fr/hal-01653881 -
4A. Celisse.
Optimal cross-validation in density estimation with the L2-loss, in: The Annals of Statistics, 2014, vol. 42, no 5, pp. 1879–1910.
https://hal.archives-ouvertes.fr/hal-00337058 -
5S. Dabo-Niang, C. Ternynck, A.-F. Yao.
Nonparametric prediction in the multivariate spatial context, in: Journal of Nonparametric Statistics, 2016, vol. 28, no 2, pp. 428-458. [ DOI : 10.1080/10485252.2016.01.007 ]
https://hal.inria.fr/hal-01425932 -
6J. Dubois, V. Dubois, H. Dehondt, P. Mazrooei, C. Mazuy, A. A. Sérandour, C. Gheeraert, P. Guillaume, E. Baugé, B. Derudas, N. Hennuyer, R. Paumelle, G. Marot, J. S. Carroll, M. Lupien, B. Staels, P. Lefebvre, J. Eeckhoute.
The logic of transcriptional regulator recruitment architecture at cis -regulatory modules controlling liver functions, in: Genome Research, June 2017, vol. 27, no 6, pp. 985–996. [ DOI : 10.1101/gr.217075.116 ]
https://hal.archives-ouvertes.fr/hal-01647846 -
7G. Letarte, P. Germain, B. Guedj, F. Laviolette.
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, in: NeurIPS 2019, Vancouver, Canada, December 2019.
https://hal.inria.fr/hal-02139432 -
8M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of Gaussian copulas for mixed data, in: Communications in Statistics - Theory and Methods, December 2016.
https://hal.archives-ouvertes.fr/hal-00987760 -
9C. Preda, A. Dermoune.
Parametrizations, fixed and random effects, in: Journal of Multivariate Analysis, February 2017, vol. 154, pp. 162–176. [ DOI : 10.1016/j.jmva.2016.11.001 ]
https://hal.archives-ouvertes.fr/hal-01655461 -
10H. Tyagi, J. Vybiral.
Learning general sparse additive models from point queries in high dimensions, in: Constructive Approximation, January 2019.
https://hal.inria.fr/hal-02379404
Doctoral Dissertations and Habilitation Theses
-
11M. Baelde.
Generative models for the classification and separation of real-time sound sources, Université de Lille 1, September 2019.
https://hal.archives-ouvertes.fr/tel-02399081 -
12A.-L. Bedenel.
Matching descriptors evolving over time: application to insurance comparison, Université de Lille I, April 2019.
https://hal.archives-ouvertes.fr/tel-02399068 -
13A. Ehrhardt.
Formalization and study of statistical problems in Credit Scoring : Reject inference, discretization and pairwise interactions, logistic regression trees, Université de Lille, September 2019.
https://hal.archives-ouvertes.fr/tel-02302691
Articles in International Peer-Reviewed Journals
-
14P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand, N. P. Rougier.
Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria, in: Computing in Science & Engineering, 2019, pp. 1-14, https://arxiv.org/abs/1905.11123. [ DOI : 10.1109/MCSE.2019.2949413 ]
https://hal.archives-ouvertes.fr/hal-02135891 -
15S. Arlot, A. Celisse, Z. Harchaoui.
A Kernel Multiple Change-point Algorithm via Model Selection, in: Journal of Machine Learning Research, December 2019, vol. 20, no 162, pp. 1–56, https://arxiv.org/abs/1202.3878.
https://hal.archives-ouvertes.fr/hal-00671174 -
16M. Baelde, C. Biernacki, R. Greff.
Real-Time Monophonic and Polyphonic Audio Classification from Power Spectra, in: Pattern Recognition, August 2019, vol. 92, pp. 82-92. [ DOI : 10.1016/j.patcog.2019.03.017 ]
https://hal.archives-ouvertes.fr/hal-01834221 -
17M. Bernardini, A. Brossa, G. Chinigo, G. Grolez, G. Trimaglio, L. Allart, A. Hulot, G. Marot, T. Genova, A. Joshi, V. Mattot, G. Fromont, L. Munaron, B. Bussolati, N. Prevarskaya, A. Fiorio Pla, D. Gkika.
Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis, in: Cancers, July 2019, vol. 11, no 7, 956 p. [ DOI : 10.3390/cancers11070956 ]
https://hal.archives-ouvertes.fr/hal-02404061 -
18S. Curceac, C. Ternynck, T. B. Ouarda, F. Chebana, S. Dabo-Niang.
Short-term air temperature forecasting using Nonparametric Functional Data Analysis and SARMA models, in: Environmental Modelling and Software, January 2019, vol. 111, pp. 394-408. [ DOI : 10.1016/j.envsoft.2018.09.017 ]
https://hal.inria.fr/hal-01948928 -
19M. Cuvelliez, V. Vandewalle, M. Brunin, O. Beseme, A. Hulot, P. De Groote, P. Amouyel, C. Bauters, G. Marot, F. Pinet.
Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction - Short title: Proteomic signature of early death in heart failure patients, in: Scientific Reports, 2019, forthcoming.
https://hal.inria.fr/hal-02400814 -
20M. Cuvelliez, V. Vandewalle, M. Brunin, O. Beseme, A. Hulot, P. De Groote, P. Amouyel, C. Bauters, G. Marot, F. Pinet.
Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction, in: Scientific Reports, December 2019, vol. 9, 19202 p. [ DOI : 10.1038/s41598-019-55727-1 ]
https://hal.archives-ouvertes.fr/hal-02414293 -
21S. Dabo-Niang, S. Curceac, C. Ternynck, T. B. Ouarda, F. Chebana, S. D. Niang.
Short-term air temperature forecasting using Nonparametric Functional Data Analysis and SARMA models, in: Environmental Modelling and Software, January 2019, vol. 111, pp. 394-408. [ DOI : 10.1016/j.envsoft.2018.09.017 ]
https://hal.inria.fr/hal-02334991 -
22S. Dabo-Niang, B. Thiam.
Kernel regression estimation with errors-in-variables for random fields, in: Afrika Matematika, 2019. [ DOI : 10.1007/s13370-019-00654-7 ]
https://hal.inria.fr/hal-02334993 -
23F. Dewez, V. Montmirail.
Decrypting the Hill Cipher via a Restricted Search over the Text-Space, in: Linköping Electronic Conference Proceedings, June 2019.
https://hal.univ-cotedazur.fr/hal-02271395 -
24A. Eftekhari, J. Tanner, A. Thompson, B. Toader, H. Tyagi.
Sparse non-negative super-resolution — simplified and stabilised, in: Applied and Computational Harmonic Analysis, August 2019. [ DOI : 10.1016/j.acha.2019.08.004 ]
https://hal.inria.fr/hal-02379445 -
25P. Germain, A. Habrard, F. Laviolette, E. Morvant.
PAC-Bayes and Domain Adaptation, in: Neurocomputing, 2020, vol. 379, pp. 379-397, https://arxiv.org/abs/1707.05712. [ DOI : 10.1016/j.neucom.2019.10.105 ]
https://hal.archives-ouvertes.fr/hal-01563152 -
26A. Goyal, E. Morvant, P. Germain, M.-R. Amini.
Multiview Boosting by Controlling the Diversity and the Accuracy of View-specific Voters, in: Neurocomputing, 2019, https://arxiv.org/abs/1808.05784, forthcoming. [ DOI : 10.1016/j.neucom.2019.04.072 ]
https://hal.archives-ouvertes.fr/hal-01857463 -
27D. A. Mogilenko, J. Haas, L. L'homme, S. Fleury, S. Quemener, M. Levavasseur, C. Becquart, J. Wartelle, A. Bogomolova, L. Pineau, O. Molendi-Coste, S. Lancel, H. Dehondt, C. Gheeraert, A. Melchior, C. Dewas, A. Nikitin, S. Pic, N. Rabhi, J.-S. Annicotte, S. Oyadomari, T. Velasco-Hernandez, J. Cammenga, M. Foretz, B. Viollet, M. Vukovic, A. Villacreces, K. Kranc, P. Carmeliet, G. Marot, A. Boulter, S. J. Tavernier, L. Berod, M. P. Longhi, C. Paget, S. Janssens, D. Staumont-Sallé, E. Aksoy, B. Staels, D. Dombrowicz.
Metabolic and innate immune cues merge into a specific inflammatory response via unfolded proteinresponse (UPR), in: Cell, May 2019, vol. 177, no 5, pp. 1201-1216.e19, Erratum in : Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. [Cell. 2019], forthcoming. [ DOI : 10.1016/j.cell.2019.03.018 ]
https://www.hal.inserm.fr/inserm-02084447 -
28M. Selosse, J. Jacques, C. Biernacki, F. Cousson-Gélie.
Analysing a quality of life survey using a co-clustering model for ordinal data and some dynamic implications, in: Journal of the Royal Statistical Society: Series C Applied Statistics, July 2019.
https://hal.archives-ouvertes.fr/hal-01643910 -
29M. Selosse, J. Jacques, C. Biernacki.
Model-based co-clustering for mixed type data, in: Computational Statistics and Data Analysis, 2020, vol. 144, 106866 p. [ DOI : 10.1016/j.csda.2019.106866 ]
https://hal.archives-ouvertes.fr/hal-01893457 -
30H. Tyagi, J. Vybiral.
Learning general sparse additive models from point queries in high dimensions, in: Constructive Approximation, January 2019.
https://hal.inria.fr/hal-02379404
Invited Conferences
-
31C. Biernacki, G. Celeux, J. Josse, F. Laporte.
Dealing with missing data in model-based clustering through a MNAR model, in: CRoNos & MDA 2019 - Meeting and Workshop on Multivariate Data Analysis and Software, Limassol, Cyprus, April 2019.
https://hal.inria.fr/hal-02103347
International Conferences with Proceedings
-
32M. Cucuringu, P. Davies, A. Glielmo, H. Tyagi.
SPONGE: A generalized eigenproblem for clustering signed networks, in: AISTATS, Okinawa, Japan, April 2019.
https://hal.inria.fr/hal-02379505 -
33B. Guedj, J. Rengot.
Non-linear aggregation of filters to improve image denoising, in: Computing Conference 2020, London, United Kingdom, July 2020.
https://hal.inria.fr/hal-02086856 -
34J. Klein, M. Albardan, B. Guedj, O. Colot.
Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles, in: ECML-PKDD, Decentralized Machine Learning at the Edge Workshop, Wurzburg, Germany, September 2019, https://arxiv.org/abs/1804.10028.
https://hal.archives-ouvertes.fr/hal-01779989 -
35G. Letarte, P. Germain, B. Guedj, F. Laviolette.
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, in: NeurIPS 2019, Vancouver, Canada, December 2019.
https://hal.inria.fr/hal-02139432 -
36G. Letarte, E. Morvant, P. Germain.
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior, in: The 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019,, 2019, https://arxiv.org/abs/1810.12683.
https://hal.archives-ouvertes.fr/hal-01908555 -
37Z. Mhammedi, P. Grünwald, B. Guedj.
PAC-Bayes Un-Expected Bernstein Inequality, in: NeurIPS 2019, Vancouver, Canada, December 2019, https://arxiv.org/abs/1905.13367.
https://hal.inria.fr/hal-02401295 -
38V. Shalaeva, A. Fakhrizadeh Esfahani, P. Germain, M. Petreczky.
Improved PAC-Bayesian Bounds for Linear Regression, in: Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, United States, February 2020, https://arxiv.org/abs/1912.03036.
https://hal.inria.fr/hal-02396556
Conferences without Proceedings
-
39C. Biernacki.
MASSICCC: A SaaS Platform for Clustering and Co-Clustering of Mixed Data, in: APSEM 2019 ((Apprentissage et SEMantique)) : éco-systèmes pour la science ouverte et recherche par les données, Toulouse, France, October 2019.
https://hal.archives-ouvertes.fr/hal-02399180 -
40C. Biernacki, M. Corréard.
Predictive maintenance solution without additional sensors, in: Forum TERATEC, Palaiseau, France, June 2019.
https://hal.archives-ouvertes.fr/hal-02399046 -
41C. Biernacki, A. Lourme.
Unifying Data Units and Models in (Co-)Clustering, in: CLADAG 2019 - 12th Scientific Meeting Classification and Data Analysis Group, Cassino, Italy, September 2019.
https://hal.archives-ouvertes.fr/hal-02398982 -
42C. Biernacki, M. Marbac, V. Vandewalle.
Gaussian Based Visualization of Gaussian and Non-Gaussian Based Clustering, in: 3rd International Conference on Econometrics and Statistics (EcoSta 2019), Taichung, Taiwan, June 2019.
https://hal.archives-ouvertes.fr/hal-02398999 -
43A. Constantin, M. Fauvel, S. Girard, S. Iovleff, Y. Tanguy.
Classification de Signaux Multidimensionnels Irrégulièrement Echantillonnés, in: 2019 - Journée Jeunes Chercheurs MACLEAN du GDR MADICS, Paris, France, December 2019, pp. 1-2.
https://hal.archives-ouvertes.fr/hal-02394120 -
44L. Gautheron, P. Germain, A. Habrard, G. Letarte, E. Morvant, M. Sebban, V. Zantedeschi.
Revisite des "random Fourier features" basée sur l'apprentissage PAC-Bayésien via des points d'intérêts, in: CAp 2019 - Conférence sur l'Apprentissage automatique, Toulouse, France, July 2019.
https://hal.archives-ouvertes.fr/hal-02148600 -
45C. Keribin, C. Biernacki.
Co-clustering: model based or model free approaches, in: ISI WSC 2019 - 62nd ISI World Statistics Congress, Kuala Lumpur, Malaysia, August 2019.
https://hal.archives-ouvertes.fr/hal-02399031 -
46C. Keribin, C. Biernacki.
Le modèle des blocs latents, une méthode régularisée pour la classification en grande dimension, in: JdS 2019 - 51èmes Journées de Statistique de la SFdS, Nancy, France, June 2019.
https://hal.archives-ouvertes.fr/hal-02391379 -
47F. Laporte, C. Biernacki, G. Celeux, J. Josse.
Modèles de classification non supervisée avec données manquantes non au hasard, in: JdS 2019 - 51e journées de statistique de la Sfds, Nancy, France, June 2019.
https://hal.archives-ouvertes.fr/hal-02398984 -
48M. Marbac-Lourdelle, C. Biernacki, V. Vandewalle.
Gaussian Based Visualization of Gaussian and Non-Gaussian Based Clustering, in: SPSR 2019, Bucarest, Romania, April 2020.
https://hal.archives-ouvertes.fr/hal-02400486 -
49V. Vandewalle, C. Ternynck, G. Marot.
Linking different kinds of Omics data through a model-based clustering approach, in: IFCS 2019, Thessalonique, Greece, August 2019.
https://hal.archives-ouvertes.fr/hal-02400525 -
50P. Viallard, R. Emonet, P. Germain, A. Habrard, E. Morvant.
Interpreting Neural Networks as Majority Votes through the PAC-Bayesian Theory, in: Workshop on Machine Learning with guarantees @ NeurIPS 2019, Vancouver, Canada, 2019.
https://hal.archives-ouvertes.fr/hal-02335762 -
51L. Zhang, C. Biernacki, P. Germain, Y. Kessaci.
Domain Adaptation from a Pre-trained Source Model: Application on fraud detection tasks, in: 12th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2019), London, United Kingdom, December 2019.
https://hal.archives-ouvertes.fr/hal-02399003
Scientific Books (or Scientific Book chapters)
-
52S. Dabo-Niang, S. MANOU-ABI, S. Jean-Jacques.
Mathematical Modeling and Study of Random or Deterministic Phenomena,, Wiley, 2020.
https://hal.inria.fr/hal-02334997
Other Publications
-
53H. Alawieh, N. Wicker, C. Biernacki.
Projection under pairwise distance controls, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01420662 -
54C. Biernacki, M. Marbac, V. Vandewalle.
Gaussian Based Visualization of Gaussian and Non-Gaussian Based Clustering, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01949155 -
55S. Chrétien, B. Guedj.
Revisiting clustering as matrix factorisation on the Stiefel manifold, March 2019, https://arxiv.org/abs/1903.04479 - working paper or preprint.
https://hal.inria.fr/hal-02064396 -
56S. Chrétien, H. Tyagi.
Multi-kernel unmixing and super-resolution using the Modified Matrix Pencil method, November 2019, working paper or preprint.
https://hal.inria.fr/hal-02379598 -
57V. Cohen-Addad, B. Guedj, V. Kanade, G. Rom.
Online k-means Clustering, December 2019, https://arxiv.org/abs/1909.06861 - 11 pages, 1 figure.
https://hal.inria.fr/hal-02401290 -
58A. Constantin, M. Fauvel, S. Girard, S. Iovleff.
Classification de Signaux Multidimensionnels Irrégulièrement Échantillonnés, August 2019, GRETSI 2019 - 27e Colloque francophone de traitement du signal et des images, Poster.
https://hal.archives-ouvertes.fr/hal-02276255 -
59A. Constantin, M. Fauvel, S. Girard, S. Iovleff.
Supervised classification of multidimensional and irregularly sampled signals, April 2019, 1 p, Statlearn 2019 - Workshop on Challenging problems in Statistical Learning, Poster.
https://hal.archives-ouvertes.fr/hal-02092347 -
60M. Cucuringu, H. Tyagi.
Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping, November 2019, working paper or preprint.
https://hal.inria.fr/hal-02379573 -
61A. D'Aspremont, M. Cucuringu, H. Tyagi.
Ranking and synchronization from pairwise measurements via SVD, October 2019, https://arxiv.org/abs/1906.02746 - 42 pages, 9 figures.
https://hal.archives-ouvertes.fr/hal-02340372 -
62A. Ehrhardt, C. Biernacki, V. Vandewalle, P. Heinrich.
Feature quantization for parsimonious and interpretable predictive models, March 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01949135 -
63M. P. B. Gallaugher, C. Biernacki, P. D. McNicholas.
Parameter-Wise Co-Clustering for High-Dimensional Data, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01862824 -
64L. Gautheron, P. Germain, A. Habrard, E. Morvant, M. Sebban, V. Zantedeschi.
Learning Landmark-Based Ensembles with Random Fourier Features and Gradient Boosting, June 2019, https://arxiv.org/abs/1906.06203 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02148618 -
65B. Guedj, B. S. Desikan.
Kernel-Based Ensemble Learning in Python, December 2019, https://arxiv.org/abs/1912.08311 - 11 pages.
https://hal.inria.fr/hal-02443097 -
66B. Guedj.
A Primer on PAC-Bayesian Learning, May 2019, working paper or preprint.
https://hal.inria.fr/hal-01983732 -
67B. Guedj, L. Li.
Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly, May 2019, working paper or preprint.
https://hal.inria.fr/hal-01796011 -
68B. Guedj, L. Pujol.
Still no free lunches: the price to pay for tighter PAC-Bayes bounds, December 2019, https://arxiv.org/abs/1910.04460 - working paper or preprint.
https://hal.inria.fr/hal-02401286 -
69F. Laporte, C. Biernacki, G. Celeux, J. Josse.
Model-based clustering with missing not at random data. Missing mechanism, July 2019, Working Group on Model-Based Clustering Summer Session, Poster.
https://hal.archives-ouvertes.fr/hal-02398987 -
70G. Mazo, Y. Averyanov.
Constraining kernel estimators in semiparametric copula mixture models, March 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01774629 -
71K. Nozawa, P. Germain, B. Guedj.
PAC-Bayesian Contrastive Unsupervised Representation Learning, December 2019, https://arxiv.org/abs/1910.04464 - working paper or preprint.
https://hal.inria.fr/hal-02401282 -
72M. Selosse, J. Jacques, C. Biernacki.
Textual data summarization using the Self-Organized Co-Clustering model, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02115294 -
73M. Selosse, J. Jacques, C. Biernacki.
ordinalClust: an R package for analyzing ordinal data, December 2019, working paper or preprint.
https://hal.inria.fr/hal-01678800 -
74S. N. Sylla, S. Dabo-Niang, C. Loucoubar.
Functional data analysis of parasite densities in the Senegalese villages of Dielmo and NDiop, October 2019, working paper or preprint.
https://hal.inria.fr/hal-02335001 -
75J. Zhang, E. T. Barr, B. Guedj, M. Harman, J. Shawe-Taylor.
Perturbed Model Validation: A New Framework to Validate Model Relevance, May 2019, working paper or preprint.
https://hal.inria.fr/hal-02139208