Section: New Results
Deep neural network structures solving variational inequalities
Participant: Jean-Christophe Pesquet (Collaboration: Patrick Louis Combettes, North Carolina University, USA)
Motivated by structures that appear in deep neural networks, we investigate nonlinear composite models alternating proximity and affine operators defined on different spaces. We first show that a wide range of activation operators used in neural networks are actually proximity operators. We then establish conditions for the averagedness of the proposed composite constructs and investigate their asymptotic properties. It is shown that the limit of the resulting process solves a variational inequality which, in general, does not derive from a minimization problem [13].