Bibliography
Major publications by the team in recent years
-
1O. Bokanowski, B. Bruder, S. Maroso, H. Zidani.
Numerical approximation for a superreplication problem under gamma constraints, in: SIAM. Num. Analysis., 2009, vol. 47(3), p. 2289–2320. -
2O. Bokanowski, N. Megdich, H. Zidani.
Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data, in: Numerische Mathematik / Numerical Mathematics, 2010, vol. 115, no 1, p. 1–44.
http://hal. inria. fr/ inria-00193157 -
3J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, C. Sagastizábal.
Numerical Optimization: theoretical and numerical aspects, Universitext, Springer-Verlag, Berlin, 2006, second edition. -
4J. F. Bonnans, S. Maroso, H. Zidani.
Error estimates for a stochastic impulse control problem, in: Appl. Math. and Optim., 2007, vol. 55, no 3, p. 327–357. -
5J. F. Bonnans, A. Shapiro.
Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000. -
6J. F. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021. -
7N. Bérend, J. F. Bonnans, J. Laurent-Varin, M. Haddou, C. Talbot.
An Interior-Point Approach to Trajectory Optimization, in: J. Guidance, Control and Dynamics, 2007, vol. 30, no 5, p. 1228-1238. -
8J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116. -
9P. Martinon, J. F. Bonnans, J. Laurent-Varin, E. Trélat.
Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher, in: J. Guidance, Control, and Dynamics, 2009, vol. 32, no 1, p. 51-55.
Articles in International Peer-Reviewed Journal
-
10F. Alvarez, J. Bolte, J. F. Bonnans, F. Silva.
Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems, in: Mathematical Programming, Series A, 2011, 29 p.
http://hal. inria. fr/ inria-00365540/ en -
11O. Bokanowski, Y. Cheng, C.-W. Shu.
A discontinuous Galerkin solver for front propagation, in: SIAM Journal on Scientific Computing, 2011, vol. 33, no 2, p. 923-938.
http://hal. inria. fr/ hal-00653471/ en/ -
12O. Bokanowski, N. Forcadel, H. Zidani.
Deterministic state constrained optimal control problems without controllability assumptions, in: ESAIM: Control, Optimisation and Calculus of Variations, 2011, vol. 17, no 4, p. 995-1015. [ DOI : 10.1051/cocv/2010030 ]
http://hal. inria. fr/ hal-00415953/ en -
13J. F. Bonnans, J. André.
Optimal structure of gas transmission trunklines, in: Optimization and Engineering, 2011, vol. 12, no 1, p. 175-198.
http://hal. inria. fr/ inria-00350522/ en -
14A. Briani, H. Zidani.
Characterization of the value function of final state constrained control problems with BV trajectories, in: Communication on Pure and Applied Analysis, 2011, vol. 10, no 6, p. 1567-1587. [ DOI : 10.3934/cpaa.2011.10.1567 ]
http://hal. inria. fr/ inria-00627518/ en -
15Z. Cen, J. F. Bonnans, T. Christel.
Energy contracts management by stochastic programming techniques, in: Annals of Operations Research, 2011. [ DOI : 10.1007/s10479-011-0973-5 ]
http://hal. inria. fr/ inria-00486897/ en
International Conferences with Proceedings
-
16O. Bokanowski, A. Desilles, H. Zidani.
Hamilton Jacobi Approach for Motion Planning and Reachability analysis, in: Proc. Valuetools'11, ENS Cachan, Paris, France, 16 20 May 2011. -
17O. Bokanowski, H. Zidani.
Minimal Time Problems with Moving Targets and Obstacles, in: 18th IFAC World Congress, Milano, Italie, 2011, vol. 18, Part 1, p. 2589-2593. [ DOI : 10.3182/20110828-6-IT-1002.02261 ]
http://hal. inria. fr/ inria-00629166/ en -
18J. F. Bonnans, G. Granato, H. Zidani.
A Stochastic Dynamic Principle for Hybrid Systems with Execution Delay and Decision Lags, in: Proc. IEEE-CDC, Conference on Decision and Control, Orlando, Dec. 12-15, 2011. -
19N. Forcadel, Z. Rao, H. Zidani.
Optimal control problems of BV trajectories with pointwise state constraints, in: 18th IFAC World Congress, Milan, Italie, 2011, vol. 18. [ DOI : 10.3182/20110828-6-IT-1002.01694 ]
http://hal. inria. fr/ inria-00639021/ en
Internal Reports
-
20M. S. Aronna.
Partially affine control problems: second order conditions and a well-posed shooting algorithm, INRIA, October 2011, no RR-7764.
http://hal. inria. fr/ inria-00631564/ en -
21M. S. Aronna, J. F. Bonnans, A. V. Dmitruk, P. Lotito.
Quadratic conditions for bang-singular extremals, INRIA, June 2011, no RR-7664.
http://hal. inria. fr/ inria-00605128/ en -
22M. S. Aronna, J. F. Bonnans, P. Martinon.
A well-posed shooting algorithm for optimal control problems with singular arcs, INRIA, October 2011, no RR-7763.
http://hal. inria. fr/ inria-00631332/ en -
23T. Bayen, J. F. Bonnans, F. Silva.
Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations, INRIA, October 2011, no RR-7765.
http://hal. inria. fr/ inria-00632308/ en -
24I. Ben Latifa, J. F. Bonnans, M. Mnif.
Optimal multiple stopping problem and financial applications, INRIA, November 2011, no RR-7807.
http://hal. inria. fr/ hal-00642919/ en -
25J. F. Bonnans, N. Osmolovskii.
Characterization of a local quadratic growth of the Hamiltonian for control constrained optimal control problems, INRIA, March 2011, no RR-7570.
http://hal. inria. fr/ inria-00577604/ en -
26J. F. Bonnans, G. Spiers, J.-L. Vie.
Global optimization of pipe networks by the interval analysis approach: the Belgium network case, INRIA, November 2011, no RR-7796.
http://hal. inria. fr/ hal-00642932/ en -
27J. F. Bonnans, X. Tan.
A model-free no-arbitrage price bound for variance options, INRIA, October 2011, no RR-7777.
http://hal. inria. fr/ inria-00634387/ en -
28J. F. Bonnans, X. Tan.
Monotonicity condition for the -scheme for diffusion equations, INRIA, October 2011, no RR-7778.
http://hal. inria. fr/ inria-00634417/ en -
29Z. Cen, J. F. Bonnans, T. Christel.
Sensitivity analysis of energy contracts management problem by stochastic programming techniques, INRIA, March 2011, no RR-7574.
http://hal. inria. fr/ inria-00579668/ en
Other Publications
-
30A. Altarovici, O. Bokanowski, H. Zidani.
A general Hamilton-Jacobi framework for nonlinear state-constrained control problems.
http://hal. inria. fr/ hal-00653337/ en/ -
31O. Bokanowski, Y. Cheng, C.-W. Shu.
A discontinuous Galerkin scheme for front propagation with obstacles.
http://hal. inria. fr/ hal-00653532/ en/ -
32A. Briani, F. Camilli, H. Zidani.
Approximation Schemes for Monotone Systems of Nonlinear Second Order Partial Differential Equations: Convergence Result and Error Estimate, 2011, To appear in Differential Equations and Applications.
http://hal. inria. fr/ inria-00627520/ en -
33S. Cacace, E. Cristiani, M. Falcone, A. Picarelli.
A Patchy Dynamic Programming Scheme for a Class of Hamilton-Jacobi-Bellman Equations, 2011, Submitted to SIAM J. Scientific Computing.
http://hal. inria. fr/ inria-00628108/ en -
34N. Forcadel, Z. Rao, H. Zidani.
State-constrained optimal control problems of impulsive differential equations, submitted.
http://hal. inria. fr/ hal-00653671/ en/ -
35C. Imbert, R. Monneau, H. Zidani.
A Hamilton-Jacobi approach to junction problems and application to traffic flows, 2011, This paper is dedicated to J.-B. Hiriart-Urruty. Note on v3: to appear in ESAIM: COCV..
http://hal. inria. fr/ hal-00569010/ en
-
36R. Abgrall.
Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, in: SIAM J. Numerical Analysis, 2003, vol. 41, no 6, p. 2233–2261. -
37R. Abgrall, S. Augoula.
High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, in: J. Scientific Computing, 2000, vol. 15, no 2, p. 197–229. -
38J. Aubin, H. Frankowska.
Set-valued analysis, Birkhäuser, Boston, 1990. -
39M. Bardi, I. Capuzzo-Dolcetta.
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997. -
40G. Barles.
Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications, Springer, Paris, 1994, vol. 17. -
41G. Barles, E. Jakobsen.
Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations, in: SIAM J. Numerical Analysis, 2005, vol. 43, no 2, p. 540–558 (electronic). -
42G. Bliss.
Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946. -
43J. F. Bonnans, A. Hermant.
Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control, in: SIAM J. Control Optimization, 2007, vol. 46, no 4, p. 1398–1430. -
44J. F. Bonnans, A. Hermant.
Second-order Analysis for Optimal Control Problems with Pure State Constraints and Mixed Control-State Constraints, in: Annales de l'Institut Henri Poincaré. Analyse non linéaire., 2009, vol. 26, no 2, p. 561-598. -
45J. F. Bonnans, J. Laurent-Varin.
Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, in: Numerische Mathematik, 2006, vol. 103, no 1, p. 1–10. -
46J. F. Bonnans, E. Ottenwaelter, H. Zidani.
Numerical schemes for the two dimensional second-order HJB equation, in: ESAIM: M2AN, 2004, vol. 38, p. 723-735. -
47J. F. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, p. 1008-1021. -
48A. E. Bryson, Y.-C. Ho.
Applied optimal control, Hemisphere Publishing, New-York, 1975. -
49F. Clarke.
A new approach to Lagrange multipliers, in: Mathematics of Operations Research, 1976, vol. 2, p. 165-174. -
50M. Crandall, L. Evans, P. Lions.
Some properties of viscosity solutions of Hamilton-Jacobi equations, in: Trans. Amer. Math. Soc, 1984, vol. 282, p. 487-502. -
51M. Crandall, P. Lions.
Viscosity solutions of Hamilton Jacobi equations, in: Bull. American Mathematical Society, 1983, vol. 277, p. 1–42. -
52M. Crandall, P. Lions.
Two approximations of solutions of Hamilton-Jacobi equations, in: Mathematics of Computation, 1984, vol. 43, p. 1–19. -
53B. Després, F. Lagoutière.
Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, in: J. Sci. Comput., 2001, vol. 16, p. 479-524. -
54B. Després, F. Lagoutière.
A non-linear anti-diffusive scheme for the linear advection equation, in: C. R. Acad. Sci. Paris, Série I, Analyse numérique, 1999, vol. 328, p. 939-944. -
55A. Dontchev, W. Hager, V. Veliov.
Second-order Runge-Kutta approximations in control constrained optimal control, in: SIAM Journal on Numerical Analysis, 2000, vol. 38, p. 202–226 (electronic). -
56I. Ekeland.
Nonconvex minimization problems, in: Bulletin of the American Mathematical Society, 1979, vol. 1(New series), p. 443-474. -
57M. Falcone, R. Ferretti.
Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, in: Journal of Computational Physics, 2002, vol. 175, p. 559–575. -
58M. Falcone, R. Ferretti.
Convergence analysis for a class of high-order semi-Lagrangian advection schemes, in: SIAM J. Numer. Anal., 1998, vol. 35, no 3, p. 909–940 (electronic). -
59J. Gergaud, P. Martinon.
Using switching detection and variational equations for the shooting method, in: Optimal Control Applications and Methods, 2007, vol. 28, no 2, p. 95–116. -
60W. Hager.
Runge-Kutta methods in optimal control and the transformed adjoint system, in: Numerische Mathematik, 2000, vol. 87, no 2, p. 247–282. -
61E. Harten.
ENO schemes with subcell resolution, in: J. Computational Physics, 1989, vol. 83, p. 148–184. -
62C. Hu, C.-W. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic). -
63C. Hu, C.-W. Shu.
A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, in: SIAM J. on Scientific Computing, 1999, vol. 21, no 2, p. 666–690 (electronic). -
64A. Ioffe, V. Tihomirov.
Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974. -
65N. Krylov.
On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, in: Probability Theory and Related Fields, 2000, vol. 117, p. 1–16. -
66H. Kushner, P. Dupuis.
Numerical methods for stochastic control problems in continuous time, Applications of mathematics, Springer, New York, 2001, vol. 24, Second edition. -
67J.-L. Lagrange.
Mécanique analytique, Paris, 1788, reprinted by J. Gabay, 1989. -
68E. Lee, L. Markus.
Foundations of optimal control theory, John Wiley, New York, 1967. -
69G. Leitmann.
An introduction to optimal control, Mc Graw Hill, New York, 1966. -
70K. Malanowski, C. Büskens, H. Maurer.
Convergence of approximations to nonlinear optimal control problems, in: Mathematical programming with data perturbations, New York, Lecture Notes in Pure and Appl. Math., Dekker, New York, 1998, vol. 195, p. 253–284. -
71S. Osher, C.-W. Shu.
High essentially nonoscillatory schemes for Hamilton-Jacobi equations, in: SIAM J. Numer. Anal., 1991, vol. 28, no 4, p. 907-922. -
72H. Pham.
Optimisation et Contrôle Stochastique Appliqués à la Finance, Springer Verlag, 2007, no 61. -
73L. Pontryagin, V. Boltyanski, R. Gamkrelidze, E. Michtchenko.
The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962. -
74P. Roe.
Some contributions to the modelling of discontinuous flows, in: Lectures in Applied Mathematics, 1985, vol. 22, p. 163–193. -
75L. Young.
Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969. -
76B. Øksendal.
Stochastic differential equations, Universitext, Sixth, Springer-Verlag, Berlin, 2003.