I4S - 2014

Section: New Results

Vision under environmental conditions

Infrared Imaging under environmental conditions

Participant : Jean Dumoulin.

An infrared system has been developed to monitor transport infrastructures in a standalone configuration. It is based on low cost infrared thermal cameras linked with a calculation unit in order to produce a corrected thermal map of the surveyed structure at a selected time step. With the inline version, the data collected feed simplified radiative models running a GPU. With the offline version, the thermal map can be corrected when data are collected under different atmospheric conditions up to foggy night conditions. A model for radiative transmission prediction is proposed and limitations are addressed. Furthermore, the results obtained by image and signal processing methods with data acquired on the transport infrastructure opened to traffic are presented. Finally, conclusions and perspectives for new implementation and new functionalities are presented and discussed [18] .

Long term thermal monitoring by uncooled infrared camera

Participant : Jean Dumoulin.

Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagneticmethods, long term thermal monitoring by uncooled infrared camera is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified [56] .

Handling of fog conditions by infrared cameras

Participant : Jean Dumoulin.

Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, ...). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems [35] .