EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1S. Delmas.

    Direct numerical simulation of a jet in crossflow at low Mach number in order to improve effusion cooling for combustion chambers, Université de Pau et des pays de l'Adour, December 2015.

    https://hal.archives-ouvertes.fr/tel-01256238

Articles in International Peer-Reviewed Journals

  • 2A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, Y. Zeraouli.

    Solar driven cooling systems: An updated review, in: Renewable and Sustainable Energy Review, April 2015, vol. 44, pp. 159–181. [ DOI : 10.1016/j.rser.2014.12.014 ]

    https://hal.inria.fr/hal-01107607
  • 3A. Beketaeva, P. Bruel, A. Naïmanova.

    Vortical structures behind a transverse jet in a supersonic flow at high jet to crossflow pressure ratios, in: Journal of Applied Mechanics and Technical Physics, December 2015, vol. 56, no 5, 12 p.

    https://hal.inria.fr/hal-01253886
  • 4B. De Laage De Meux, B. Audebert, R. Manceau, R. Perrin.

    Anisotropic linear forcing for synthetic turbulence generation in large eddy simulation and hybrid RANS/LES modeling, in: Physics of Fluids, 2015, vol. 27, 35 p. [ DOI : 10.1063/1.4916019 ]

    https://hal.inria.fr/hal-01246100
  • 5E. FRANQUET, V. Perrier, S. Gibout, P. Bruel.

    Free underexpanded jets in a quiescent medium: A review, in: Progress in Aerospace Sciences, August 2015, vol. 77, 29 p. [ DOI : 10.1016/j.paerosci.2015.06.006 ]

    https://hal.inria.fr/hal-01247078
  • 6C. Friess, R. Manceau, T. Gatski.

    Toward an equivalence criterion for Hybrid RANS/LES methods, in: Computers and Fluids, 2015, vol. 122, 14 p. [ DOI : 10.1016/j.compfluid.2015.08.010 ]

    https://hal.inria.fr/hal-01246130
  • 7R. Manceau.

    Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: International Journal of Heat and Fluid Flow, 2015, 32 p. [ DOI : 10.1016/j.ijheatfluidflow.2014.09.002 ]

    https://hal.inria.fr/hal-01092931
  • 8Y. Moguen, P. Bruel, E. Dick.

    Solving low Mach number Riemann problems by a momentum interpolation method, in: Journal of Computational Physics, October 2015, vol. 298, 6 p. [ DOI : 10.1016/j.jcp.2015.06.037 ]

    https://hal.inria.fr/hal-01247086
  • 9Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.

    Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]

    https://hal.inria.fr/hal-01096422

Invited Conferences

  • 10J. Jung.

    A low Mach correction for the Godunov scheme applied to the linear wave equation with porosity, in: Low velocity flows, Paris, France, November 2015.

    https://hal.inria.fr/hal-01256455
  • 11V. Perrier.

    Discontinuous Galerkin methods for aerodynamic applications, in: Méthode de Galerkin discontinue et ses applications, Paris, France, June 2015.

    https://hal.inria.fr/hal-01256443

International Conferences with Proceedings

  • 12S. Benhamadouche, F. Dehoux, R. Manceau.

    An elliptic blending differential flux model for natural, mixed and forced convection, in: 8th Int. Symp. Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia-Herzegovina, Sarajevo, Bosnia and Herzegovina, 2015.

    https://hal.inria.fr/hal-01246134
  • 13R. Manceau.

    Investigation of rotating flows with separation using the elliptic-blending Reynolds-stress Model, in: 9th Int. Symp. Turb. Shear Flow Phenomena, Melbourne, Australi, Melbourne, Australia, 2015.

    https://hal.inria.fr/hal-01246146
  • 14J.-F. Wald, S. Benhamadouche, R. Manceau.

    Adaptive wall treatment for the elliptic blending Reynolds stress model, in: 36th IAHR World Congress, The Hague, the Netherlands, The Hague, Netherlands, 2015.

    https://hal.inria.fr/hal-01246140

Conferences without Proceedings

  • 15S. Delmas, V. Perrier, P. Bruel.

    Behaviour of discontinuous Galerkin methods for steady and unsteady compressible flow in the low Mach regime, in: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM), Trento, Italy, March 2015.

    https://hal.inria.fr/hal-01256440

Other Publications

  • 16A. Bondesan, S. Dellacherie, H. Hivert, J. Jung, V. Lleras, C. Mietka, Y. Penel.

    Study of a depressurisation process at low Mach number in a nuclear reactor core, August 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01258397
  • 17S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.

    Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, November 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-00776629
  • 18J.-M. Hérard, J. Jung.

    An interface condition to compute compressible flows in variable cross section ducts, November 2015, working paper or preprint.

    https://hal.inria.fr/hal-01233251
References in notes
  • 19D. Amenga-Mbengoue, D. Genet, C. Lachat, E. Martin, M. Mogé, V. Perrier, F. Renac, M. Ricchiuto, F. Rue.

    Comparison of high order algorithms in Aerosol and Aghora for compressible flows, in: ESAIM: Proceedings, December 2013, vol. 43, pp. 1-16.

    http://hal.inria.fr/hal-00917411
  • 20D. N. Arnold.

    An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760.
  • 21D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.

    Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779.
  • 22F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.

    On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111005055
  • 23F. Bassi, A. Crivellini, S. Rebay, M. Savini.

    Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
  • 24F. Bassi, S. Rebay.

    A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.

    http://dx.doi.org/10.1006/jcph.1996.5572
  • 25F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.

    A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109.
  • 26B. Cockburn, S. Hou, C.-W. Shu.

    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.

    http://dx.doi.org/10.2307/2008501
  • 27B. Cockburn, S. Y. Lin, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
  • 28B. Cockburn, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.

    http://dx.doi.org/10.2307/2008474
  • 29B. Cockburn, C.-W. Shu.

    The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
  • 30B. Cockburn, C.-W. Shu.

    The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.

    http://dx.doi.org/10.1006/jcph.1998.5892
  • 31S. S. Colis.

    Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
  • 32M. Feistauer, V. Kučera.

    On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.

    http://dx.doi.org/10.1016/j.jcp.2007.01.035
  • 33U. Frisch.

    Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995.
  • 34R. Hartmann, P. Houston.

    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
  • 35C. Johnson, A. Szepessy, P. Hansbo.

    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.

    http://dx.doi.org/10.2307/2008684
  • 36P. Lesaint, P.-A. Raviart.

    On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, no 33, pp. 89–123.
  • 37F. Lörcher, G. Gassner, C.-D. Munz.

    An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.

    http://dx.doi.org/10.1016/j.jcp.2008.02.015
  • 38W. Reed, T. Hill.

    Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.