EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. M. Amadio, Y. Regis-Gianas.

    Certifying and reasoning about cost annotations of functional programs, in: Higher-Order and Symbolic Computation, January 2013.

    https://hal.inria.fr/inria-00629473
  • 2Z. Ariola, H. Herbelin, A. Sabry.

    A Type-Theoretic Foundation of Delimited Continuations, in: Higher Order and Symbolic Computation, 2007.

    http://dx.doi.org/10.1007/s10990-007-9006-0
  • 3D. Baelde, A. Doumane, A. Saurin.

    Infinitary proof theory : the multiplicative additive case , in: Proceedings of CSL 2016, September 2016.

    https://hal.archives-ouvertes.fr/hal-01339037
  • 4C. Chenavier.

    The lattice of reduction operators: applications to noncommutative Gröbner bases and homological algebra, Université paris Diderot, December 2016.

    https://tel.archives-ouvertes.fr/tel-01415910
  • 5P.-L. Curien.

    Operads, clones, and distributive laws, in: Operads and Universal Algebra : Proceedings of China-France Summer Conference, Tianjin, China, L. G. Chengming Bai, J.-L. Loday (editors), Nankai Series in Pure, Applied Mathematics and Theoretical Physics, Vol. 9, World Scientific, July 2010, pp. 25-50.

    https://hal.archives-ouvertes.fr/hal-00697065
  • 6P.-L. Curien, R. Garner, M. Hofmann.

    Revisiting the categorical interpretation of dependent type theory, in: Theoretical computer Science, 2014, vol. 546, pp. 99-119.

    http://dx.doi.org/10.1007/s10990-007-9006-0
  • 7P.-L. Curien, H. Herbelin.

    The duality of computation, in: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP '00), Montreal, Canada, SIGPLAN Notices 35(9), ACM, September 18-21 2000, pp. 233–243. [ DOI : 10.1145/351240.351262 ]

    http://hal.archives-ouvertes.fr/inria-00156377/en/
  • 8P.-L. Curien, H. Herbelin.

    Abstract machines for dialogue games, in: Interactive models of computation and program behavior, Panoramas et Synthèses, Société Mathématique de France, 2009, pp. 231-275.

    https://hal.archives-ouvertes.fr/hal-00155295
  • 9P. Dehornoy, Y. Guiraud.

    Quadratic normalization in monoids, in: Internat. J. Algebra Comput., 2016, vol. 26, no 5, pp. 935–972.

    https://doi.org/10.1142/S0218196716500399
  • 10S. Gaussent, Y. Guiraud, P. Malbos.

    Coherent presentations of Artin monoids, in: Compositio Mathematica, 2015, vol. 151, no 5, pp. 957-998. [ DOI : 10.1112/S0010437X14007842 ]

    https://hal.archives-ouvertes.fr/hal-00682233
  • 11T. Girka, D. Mentré, Y. Regis-Gianas.

    Oracle-based Dierential Operational Semantics (long version), Université Paris Diderot / Sorbonne Paris Cité, October 2016.

    https://hal.inria.fr/hal-01419860
  • 12Y. Guiraud, P. Malbos.

    Higher-dimensional normalisation strategies for acyclicity, in: Advances in Mathematics, 2012, vol. 231, no 3-4, pp. 2294-2351. [ DOI : 10.1016/j.aim.2012.05.010 ]

    https://hal.archives-ouvertes.fr/hal-00531242
  • 13Y. Guiraud, P. Malbos, S. Mimram.

    A Homotopical Completion Procedure with Applications to Coherence of Monoids, in: RTA - 24th International Conference on Rewriting Techniques and Applications - 2013, Eindhoven, Netherlands, F. Van Raamsdonk (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2013, vol. 21, pp. 223-238. [ DOI : 10.4230/LIPIcs.RTA.2013.223 ]

    https://hal.inria.fr/hal-00818253
  • 14H. Herbelin.

    On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic, in: Proceedings of TLCA 2005, P. Urzyczyn (editor), Lecture Notes in Computer Science, Springer, 2005, vol. 3461, pp. 209–220.
  • 15H. Herbelin.

    An intuitionistic logic that proves Markov's principle, in: Logic In Computer Science, Edinburgh, Royaume-Uni, IEEE Computer Society, 2010.

    http://hal.inria.fr/inria-00481815/en/
  • 16H. Herbelin.

    A Constructive Proof of Dependent Choice, Compatible with Classical Logic, in: LICS 2012 - 27th Annual ACM/IEEE Symposium on Logic in Computer Science, Dubrovnik, Croatia, Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, 25-28 June 2012, Dubrovnik, Croatia, IEEE Computer Society, June 2012, pp. 365-374.

    https://hal.inria.fr/hal-00697240
  • 17G. Jaber, N. Tabareau, M. Sozeau.

    Extending Type Theory with Forcing, in: LICS 2012 : Logic In Computer Science, Dubrovnik, Croatia, June 2012.

    https://hal.archives-ouvertes.fr/hal-00685150
  • 18G. Munch-Maccagnoni.

    Focalisation and Classical Realisability, in: Computer Science Logic '09, E. Grädel, R. Kahle (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, pp. 409–423.
  • 19Y. Regis-Gianas, F. Pottier.

    A Hoare Logic for Call-by-Value Functional Programs, in: Proceedings of the Ninth International Conference on Mathematics of Program Construction (MPC'08), Lecture Notes in Computer Science, Springer, July 2008, vol. 5133, pp. 305–335.

    http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
  • 20A. Saurin.

    Separation with Streams in the Λμ-calculus, in: Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, pp. 356-365.
  • 21M. Sozeau, N. Oury.

    First-Class Type Classes, in: Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, O. A. Mohamed, C. Muñoz, S. Tahar (editors), Lecture Notes in Computer Science, Springer, 2008, vol. 5170, pp. 278-293.
  • 22B. Ziliani, M. Sozeau.

    A comprehensible guide to a new unifier for CIC including universe polymorphism and overloading, in: Journal of Functional Programming, 2017, vol. 27. [ DOI : 10.1017/S0956796817000028 ]

    https://hal.inria.fr/hal-01671925
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

International Conferences with Proceedings

  • 36A. Bauer, G. Jason, P. Lumsdaine, M. Shulman, M. Sozeau, B. Spitters.

    The HoTT Library: A Formalization of Homotopy Type Theory in Coq, in: CPP'17, Paris, France, CPP'17, ACM, January 2017, 9 p. [ DOI : 10.1145/3018610.3018615 ]

    https://hal.inria.fr/hal-01421212
  • 37R. Chen, J.-J. Lévy.

    A Semi-automatic Proof of Strong connectivity, in: 9th Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE), Heidelberg, Germany, July 2017.

    https://hal.inria.fr/hal-01632947
  • 39T. Girka, D. Mentré, Y. Régis-Gianas.

    Verifiable Semantic Difference Languages, in: International Symposium on Principles and Practice of Declarative Programming, Namur, Belgium, October 2017. [ DOI : 10.1145/3131851.3131870 ]

    https://hal.inria.fr/hal-01653283
  • 40É. Miquey.

    A Classical Sequent Calculus with Dependent Types , in: 26th European Symposium on Programming, Uppsala, Sweden, April 2017.

    https://hal.inria.fr/hal-01375977

National Conferences with Proceedings

  • 41R. Chen, J.-J. Lévy.

    Une preuve formelle de l'algorithme de Tarjan-1972 pour trouver les composantes fortement connexes dans un graphe, in: JFLA 2017 - Vingt-huitièmes Journées Francophones des Langages Applicatifs, Gourette, France, Vingt-huitièmes Journées Francophones des Langages Applicatifs, January 2017.

    https://hal.inria.fr/hal-01422215

Conferences without Proceedings

  • 42A. Anand, S. Boulier, N. Tabareau, M. Sozeau.

    Typed Template Coq – Certified Meta-Programming in Coq, in: The Fourth International Workshop on Coq for Programming Languages, Los Angeles, CA, United States, January 2018.

    https://hal.inria.fr/hal-01671948
  • 43T. Zimmermann, H. Herbelin.

    Coq's Prolog and application to defining semi-automatic tactics, in: Type Theory Based Tools, Paris, France, January 2017.

    https://hal.archives-ouvertes.fr/hal-01671994

Internal Reports

  • 44A. Timany, M. Sozeau.

    Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCuIC), KU Leuven, Belgium ; Inria Paris, October 2017, no RR-9105, 30 p, Version 2 fixes some typos from version 1.

    https://hal.inria.fr/hal-01615123

Other Publications

References in notes
  • 58F. A. Al-Agl, R. Brown, R. Steiner.

    Multiple categories: the equivalence of a globular and a cubical approach, in: Adv. Math., 2002, vol. 170, no 1, pp. 71–118.

    https://doi.org/10.1006/aima.2001.2069
  • 59D. J. Anick.

    On the Homology of Associative Algebras, in: Trans. Amer. Math. Soc., 1986, vol. 296, no 2, pp. 641–659.
  • 60D. Ara, F. Métayer.

    The Brown-Golasiński Model Structure on strict -groupoids revisited, in: Homology, Homotopy and Applications, 2011, vol. 13, no 1, pp. 121–142.
  • 61J. Baez, A. Crans.

    Higher-dimensional algebra. VI. Lie 2-algebras, in: Theory Appl. Categ., 2004, vol. 12, pp. 492–538.
  • 62H. P. Barendregt.

    The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.
  • 63R. Berger.

    Confluence and Koszulity, in: J. Algebra, 1998, vol. 201, no 1, pp. 243–283.
  • 64Y. Bertot, P. Castéran.

    Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, Springer, 2004.
  • 65G. Bonfante, Y. Guiraud.

    Polygraphic Programs and Polynomial-Time Functions, in: Logical Methods in Computer Science, 2009, vol. 5, no 2, pp. 1–37.
  • 66S. Boulier, P.-M. Pédrot, N. Tabareau.

    The next 700 syntactical models of type theory, in: Certified Programs and Proofs (CPP 2017), Paris, France, January 2017, pp. 182 - 194. [ DOI : 10.1145/3018610.3018620 ]

    https://hal.inria.fr/hal-01445835
  • 67R. Brown, P. J. Higgins.

    The equivalence of -groupoids and crossed complexes, in: Cahiers Topologie Géom. Différentielle, 1981, vol. 22, no 4, pp. 371–386.
  • 68R. Brown, P. J. Higgins.

    The equivalence of ω-groupoids and cubical T-complexes, in: Cahiers Topologie Géom. Différentielle, 1981, vol. 22, no 4, pp. 349–370.
  • 69B. Buchberger.

    Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), Mathematical Institute, University of Innsbruck, Austria, 1965.
  • 70A. Burroni.

    Higher-dimensional word problems with applications to equational logic, in: Theoretical Computer Science, jul 1993, vol. 115, no 1, pp. 43–62.
  • 71A. Chlipala.

    Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant, MIT Press, 2013.

    http://mitpress.mit.edu/books/certified-programming-dependent-types
  • 72A. Church.

    A set of Postulates for the foundation of Logic, in: Annals of Mathematics, 1932, vol. 2, pp. 33, 346-366.
  • 73J. Cockx, D. Devriese, F. Piessens.

    Pattern matching without K, in: Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, 2014, pp. 257–268.

    http://doi.acm.org/10.1145/2628136.2628139
  • 74T. Coquand.

    Une théorie des Constructions, University Paris 7, January 1985.
  • 75T. Coquand, G. Huet.

    Constructions : A Higher Order Proof System for Mechanizing Mathematics, in: EUROCAL'85, Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203.
  • 76T. Coquand, C. Paulin-Mohring.

    Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417.
  • 77H. B. Curry, R. Feys, W. Craig.

    Combinatory Logic, North-Holland, 1958, vol. 1, §9E.
  • 78P. Dehornoy, Y. Lafont.

    Homology of Gaussian groups, in: Ann. Inst. Fourier (Grenoble), 2003, vol. 53, no 2, pp. 489–540.

    http://aif.cedram.org/item?id=AIF_2003__53_2_489_0
  • 79P. Deligne.

    Action du groupe des tresses sur une catégorie, in: Invent. Math., 1997, vol. 128, no 1, pp. 159–175.
  • 80J.-C. Faugére.

    A new efficient algorithm for computing Gröbner bases (F4), in: J. Pure Appl. Algebra, 1999, vol. 139, no 1-3, pp. 61–88, Effective methods in algebraic geometry (Saint-Malo, 1998).

    https://doi.org/10.1016/S0022-4049(99)00005-5
  • 81M. Felleisen, D. P. Friedman, E. Kohlbecker, B. F. Duba.

    Reasoning with continuations, in: First Symposium on Logic and Computer Science, 1986, pp. 131-141.
  • 82A. Filinski.

    Representing Monads, in: Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL'94, Portland, OR, USA, ACM Press, 17-21 Jan 1994, pp. 446-457.
  • 83G. Gentzen.

    Untersuchungen über das logische Schließen, in: Mathematische Zeitschrift, 1935, vol. 39, pp. 176–210,405–431.
  • 84J.-Y. Girard.

    Une extension de l'interpretation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types, in: Second Scandinavian Logic Symposium, J. Fenstad (editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, pp. 63-92.
  • 85T. G. Griffin.

    The Formulae-as-Types Notion of Control, in: Conf. Record 17th Annual ACM Symp. on Principles of Programming Languages, POPL '90, San Francisco, CA, USA, 17-19 Jan 1990, ACM Press, 1990, pp. 47–57.
  • 86Y. Guiraud.

    Présentations d'opérades et systèmes de réécriture, Univ. Montpellier 2, 2004.
  • 87Y. Guiraud.

    Termination Orders for 3-Dimensional Rewriting, in: Journal of Pure and Applied Algebra, 2006, vol. 207, no 2, pp. 341–371.
  • 88Y. Guiraud.

    The Three Dimensions of Proofs, in: Annals of Pure and Applied Logic, 2006, vol. 141, no 1–2, pp. 266–295.
  • 89Y. Guiraud.

    Two Polygraphic Presentations of Petri Nets, in: Theoretical Computer Science, 2006, vol. 360, no 1–3, pp. 124–146.
  • 90Y. Guiraud, E. Hoffbeck, P. Malbos.

    Confluence of linear rewriting and homology of algebras, in: 3rd International Workshop on Confluence, Vienna, Austria, July 2014.

    https://hal.archives-ouvertes.fr/hal-01105087
  • 91Y. Guiraud, P. Malbos.

    Higher-dimensional categories with finite derivation type, in: Theory Appl. Categ., 2009, vol. 22, no 18, pp. 420-478.
  • 92Y. Guiraud, P. Malbos.

    Identities among relations for higher-dimensional rewriting systems, in: Séminaires et Congrès, Société Mathématique de France, 2011, vol. 26, pp. 145-161.
  • 93Y. Guiraud, P. Malbos.

    Coherence in monoidal track categories, in: Math. Structures Comput. Sci., 2012, vol. 22, no 6, pp. 931–969.
  • 94M. Hofmann, T. Streicher.

    The groupoid interpretation of type theory, in: Twenty-five years of constructive type theory (Venice, 1995), Oxford Logic Guides, Oxford Univ. Press, New York, 1998, vol. 36, pp. 83–111.
  • 95W. A. Howard.

    The formulae-as-types notion of constructions, in: to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, 1980, Unpublished manuscript of 1969.
  • 96J.-L. Krivine.

    A call-by-name lambda-calculus machine, in: Higher Order and Symbolic Computation, 2005.
  • 97J.-L. Krivine.

    Un interpréteur du lambda-calcul, 1986, Unpublished.
  • 98Y. Lafont.

    Towards an Algebraic Theory of Boolean Circuits, in: Journal of Pure and Applied Algebra, 2003, vol. 184, pp. 257-310.
  • 99Y. Lafont, F. Métayer, K. Worytkiewicz.

    A Folk Model Structure on Omega-Cat, in: Advances in Mathematics, 2010, vol. 224, no 3, pp. 1183–1231.
  • 100P. Landin.

    The mechanical evaluation of expressions, in: The Computer Journal, January 1964, vol. 6, no 4, pp. 308–320.
  • 101P. Landin.

    A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965, no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation, 11(2), 1998.
  • 102G. Lee, B. Werner.

    Proof-irrelevant model of CC with predicative induction and judgmental equality, in: Logical Methods in Computer Science, 2011, vol. 7, no 4.
  • 103P. Malbos.

    Critères de finitude homologique pour la non convergence des systèmes de réécriture de termes, Univ. Montpellier 2, 2004.
  • 104P. Martin-Löf.

    A theory of types, University of Stockholm, 1971, no 71-3.
  • 105M. Parigot.

    Free Deduction: An Analysis of "Computations" in Classical Logic, in: Logic Programming, Second Russian Conference on Logic Programming, St. Petersburg, Russia, A. Voronkov (editor), Lecture Notes in Computer Science, Springer, September 11-16 1991, vol. 592, pp. 361-380.

    http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
  • 106S. B. Priddy.

    Koszul resolutions, in: Trans. Amer. Math. Soc., 1970, vol. 152, pp. 39–60.
  • 107J. C. Reynolds.

    Definitional interpreters for higher-order programming languages, in: ACM '72: Proceedings of the ACM annual conference, New York, NY, USA, ACM Press, 1972, pp. 717–740.
  • 108J. C. Reynolds.

    Towards a theory of type structure, in: Symposium on Programming, B. Robinet (editor), Lecture Notes in Computer Science, Springer, 1974, vol. 19, pp. 408-423.
  • 109C. Squier, F. Otto, Y. Kobayashi.

    A finiteness condition for rewriting systems, in: Theoret. Comput. Sci., 1994, vol. 131, no 2, pp. 271–294.
  • 110C. C. Squier.

    Word problems and a homological finiteness condition for monoids, in: J. Pure Appl. Algebra, 1987, vol. 49, no 1-2, pp. 201–217.
  • 111R. Steiner.

    Omega-categories and chain complexes, in: Homology Homotopy Appl., 2004, vol. 6, no 1, pp. 175–200.

    http://projecteuclid.org/euclid.hha/1139839551
  • 112R. Street.

    Limits Indexed by Category-Valued 2-Functors, in: Journal of Pure and Applied Algebra, 1976, vol. 8, pp. 149–181.
  • 113T. C. D. Team.

    The Coq Proof Assistant, version 8.7.1, December 2017.

    https://doi.org/10.5281/zenodo.1133970
  • 114N. de Bruijn.

    AUTOMATH, a language for mathematics, Technological University Eindhoven, November 1968, no 66-WSK-05.