Section: Overall Objectives
Overall Objectives
Moving data on large supercomputers is becoming a major performance bottleneck, and the situation is expected to worsen even more at exascale and beyond. Data transfer capabilities are growing at a slower rate than processing power ones. The profusion of flops available will be difficult to use efficiently due to constrained communication capabilities. Moving data is also an important source of power consumption. The DataMove team focuses on data aware large scale computing, investigating approaches to reduce data movements on large scale HPC machines. We will investigate data aware scheduling algorithms for job management systems. The growing cost of data movements requires adapted scheduling policies able to take into account the influence of intra-application communications, IOs as well as contention caused by data traffic generated by other concurrent applications. At the same time experimenting new scheduling policies on real platforms is unfeasible. Simulation tools are required to probe novel scheduling policies. Our goal is to investigate how to extract information from actual compute centers traces in order to replay job allocations and executions with new scheduling policies. Schedulers need information about the jobs behavior on the target machine to actually make efficient allocation decisions. We will research approaches relying on learning techniques applied to execution traces to extract data and forecast job behaviors. In addition to traditional computation intensive numerical simulations, HPC platforms also need to execute more and more often data intensive processing tasks like data analysis. In particular, the ever growing amount of data generated by numerical simulation calls for a tighter integration between the simulation and the data analysis. The goal is to reduce the data traffic and to speed-up result analysis by processing results in-situ, i.e. as closely as possible to the locus and time of data generation. Our goal is here to investigate how to program and schedule such analysis workflows in the HPC context, requiring the development of adapted resource sharing strategies, data structures and parallel analytics schemes. To tackle these issues, we will intertwine theoretical research and practical developments to elaborate solutions generic and effective enough to be of practical interest. Algorithms with performance guarantees will be designed and experimented on large scale platforms with realistic usage scenarios developed with partner scientists or based on logs of the biggest available computing platforms. Conversely, our strong experimental expertise will enable to feed theoretical models with sound hypotheses, to twist proven algorithms with practical heuristics that could be further retro-feeded into adequate theoretical models.