FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies


Section: Research Program

Introduction

The methodological component of HiePACS concerns the expertise for the design as well as the efficient and scalable implementation of highly parallel numerical algorithms to perform frontier simulations. In order to address these computational challenges a hierarchical organization of the research is considered. In this bottom-up approach, we first consider in Section 3.2 generic topics concerning high performance computational science. The activities described in this section are transversal to the overall project and their outcome will support all the other research activities at various levels in order to ensure the parallel scalability of the algorithms. The aim of this activity is not to study general purpose solution but rather to address these problems in close relation with specialists of the field in order to adapt and tune advanced approaches in our algorithmic designs. The next activity, described in Section 3.3, is related to the study of parallel linear algebra techniques that currently appear as promising approaches to tackle huge problems on extreme scale platforms. We highlight the linear problems (linear systems or eigenproblems) because they are in many large scale applications the main computational intensive numerical kernels and often the main performance bottleneck. These parallel numerical techniques will be the basis of both academic and industrial collaborations, some are described in Section 4.1, but will also be closely related to some functionalities developed in the parallel fast multipole activity described in Section 3.4. Finally, as the accuracy of the physical models increases, there is a real need to go for parallel efficient algorithm implementation for multiphysics and multiscale modeling in particular in the context of code coupling. The challenges associated with this activity will be addressed in the framework of the activity described in Section 3.5.

Currently, we have one major application (see Section 4.1) that is in material physics. We will collaborate to all steps of the design of the parallel simulation tool. More precisely, our applied mathematics skill will contribute to the modelling, our advanced numerical schemes will help in the design and efficient software implementation for very large parallel simulations. We also participate to a few co-design actions in close collaboration with some applicative groups. The objective of this activity is to instantiate our expertise in fields where they are critical for designing scalable simulation tools. We refer to Section 4.2 for a detailed description of these activities.