EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 2J.-P. Bernard, E. Frenod, A. Rousseau.

    Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, February 2015, vol. 8, no 1, pp. 45-54. [ DOI : 10.3934/dcdss.2015.8.45 ]

    https://hal.archives-ouvertes.fr/hal-00833340
  • 3F. Campillo, M. Joannides, I. Larramendy-Valverde.

    Analysis and approximation of a stochastic growth model with extinction, in: Methodology and Computing in Applied Probability, January 2015, pp. 1-17.

    https://hal.inria.fr/hal-01111641
  • 4A. Duran, F. Marche.

    Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, in: Communications in Computational Physics, October 2014, 37 p.

    https://hal.archives-ouvertes.fr/hal-00980826
  • 5A. Duran, F. Marche.

    Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, in: Computers and Fluids, June 2014, pp. 35-55. [ DOI : 10.1016/j.compfluid.2014.05.031 ]

    https://hal.inria.fr/hal-00998024
  • 6M. Guerra, R. Cienfuegos, C. Escauriaza, F. Marche, J. Galaz.

    Modeling rapid flood propagation over natural terrains using a well-balanced scheme , in: Journal of Hydraulic Research, February 2014, 36 p. [ DOI : 10.1061/(ASCE)HY.1943-7900.0000881 ]

    https://hal.archives-ouvertes.fr/hal-01094954
  • 7V. Guinot, C. Delenne.

    Macroscopic modelling of urban floods, in: Houille Blanche, December 2014, vol. 6, pp. 19-25. [ DOI : 10.1051/lhb/2014058 ]

    https://hal.archives-ouvertes.fr/hal-01101501
  • 8D. Lannes, F. Marche.

    A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, in: Journal of Computational Physics, December 2014, pp. 238-268. [ DOI : 10.1016/j.jcp.2014.11.016 ]

    https://hal.archives-ouvertes.fr/hal-00932858
  • 9S. Majdalani, J. Chazarin, C. Delenne, V. Guinot.

    Solute tranport in periodical heterogeneous porous media: importance of observation scale and experimental sampling, in: Journal of Hydrology, January 2015, vol. 520, pp. 52-60. [ DOI : 10.1016/j.jhydrol.2014.10.065 ]

    https://hal.archives-ouvertes.fr/hal-01101494
  • 10M. Tayachi Pigeonnat, A. Rousseau, E. Blayo, N. Goutal, V. Martin.

    Design and analysis of a Schwarz coupling method for a dimensionally heterogeneous problem, in: International Journal for Numerical Methods in Fluids, June 2014, vol. 75, no 6, pp. 446-465. [ DOI : 10.1002/fld.3902 ]

    https://hal.inria.fr/hal-00766214

Invited Conferences

  • 11A. Rousseau.

    Bioremediation of natural resources: how optimization and numerical simulations can help, in: 3rd franco-chilean workshop on mathematical modeling for bioprocesses, Valparaiso, Chile, March 2014.

    https://hal.inria.fr/hal-00931873

International Conferences with Proceedings

  • 12M. P. Daou, E. Blayo, A. Rousseau, O. Bertrand, M. Tayachi Pigeonnat, C. Coulet, N. Goutal.

    Coupling 3D Navier-Stokes and 1D shallow water models, in: Simhydro 2014, Sophia Antipolis, France, June 2014.

    https://hal.inria.fr/hal-00995171

National Conferences with Proceedings

  • 13S. Le Roy, R. Pedreros, C. André, F. Paris, S. Lecacheux, F. Marche, C. Vinchon.

    Modélisation de la submersion marine lors de la tempête Johanna (2008) à Gâvres (Morbihan) : phénomène de franchissement en zone urbaine, in: XIIIèmes Journées Nationales Génie Côtier - Génie Civil (JNGCGC), Dunkerque, France, Paralia, July 2014, no 13, pp. 897-906. [ DOI : 10.5150/jngcgc.2014.099 ]

    https://hal-brgm.archives-ouvertes.fr/hal-01007015

Conferences without Proceedings

  • 14A. Duran.

    Discontinuous Galerkin approaches for Shallow Water and Green-Naghdi systems, in: International Conference on Hyperbolic Systems (HYP2014), Rio de Janeiro, Brazil, August 2014.

    https://hal.inria.fr/hal-01111286
  • 15F. Marche.

    Numerical approximation of a new class of 2D dispersive Green-Naghdi equations, in: International Conference on Hyperbolic Systems (HYP2014), Rio de Janeiro, Brazil, August 2014.

    https://hal.inria.fr/hal-01111287

Scientific Popularization

  • 16M. Andler, L. Bel, S. Benzoni-Gavage, T. Goudon, C. Imbert, A. Rousseau.

    Brèves de maths, Nouveau Monde Editions, October 2014.

    https://hal.inria.fr/hal-01078400
  • 17M. Nodet, A. Rousseau, S. Minjeaud.

    Courants marins : l’histoire d'une bouteille à la mer, in: Brèves de maths, Nouveau monde, October 2014.

    https://hal.inria.fr/hal-01096811
  • 18A. Rousseau, A. Rapaport, A. Pacholik, C. Leininger.

    Action Dépollution, 2014, A strategic game to learn how to quickly purify a contaminated lake.

    https://hal.inria.fr/hal-01086759

Patents

  • 19A. Rapaport, A. Rousseau, J. Harmand.

    Procédé de traitement d'une ressource fluide, programme d'ordinateur et module de traitement associés, February 2014, no FA 78 4546 - FR 13 55129.

    https://hal.inria.fr/hal-00859584

Other Publications

  • 20E. Blayo, D. Cherel, A. Rousseau.

    Towards optimized Schwarz methods for the Navier-Stokes equations, April 2014.

    https://hal.inria.fr/hal-00982087
  • 21M. P. Daou, A. Cabal, C. Coulet, O. Bertrand, E. Blayo, A. Rousseau, A. Degroof.

    Modelling crisis management for improved action and preparedness (CRISMA): Modelling submersion on the Charente-Maritime coast, July 2014, Colloque international « Connaissance et compréhension des risques côtiers : Aléas, Enjeux, Représentations, Gestion ».

    https://hal.inria.fr/hal-01100923
  • 22F. Marche.

    Contributions to the numerical approximation of shallow water asymptotics, December 2014, HDR.

    https://hal.archives-ouvertes.fr/hal-01109618
  • 23A. Pacholik.

    Conception d’un simulateur de traitement d'une ressource hydrique à destination du grand public, Institut Supérieur d'Informatique, de Modélisation et d'Informatique, September 2014.

    https://hal.inria.fr/hal-01086529
References in notes
  • 24J. Auriault.

    Heterogeneous medium. Is an equivalent macroscopic description possible?, in: International journal of engineering science, 1991.
  • 25J. Auriault, P. Adler.

    Taylor dispersion in porous media: Analysis by multiple scale expansions, in: Adv. Wat. Res., 1995, vol. 18, pp. 217–226.
  • 26E. Barthélemy.

    Nonlinear shallow water theories for coastal waves, in: Surv Geophys, 2004, vol. 25, pp. 315–337.
  • 27E. Blayo, L. Debreu.

    Revisiting open boundary conditions from the point of view of characteristic variables, in: Ocean Model, 2005, vol. 9, no 3, pp. 231–252.
  • 28P. Bonneton, F. Chazel, D. Lannes, F. Marche, M. Tissier.

    A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, in: Journal of Computational Physics, 2011, vol. 230, no 4, pp. 1479 - 1498.
  • 29M. Brocchini, N. Dodd.

    Nonlinear Shallow Water Equation Modeling for Coastal Engineering, in: Journal of Waterway, 2008.
  • 30A. Chen, B. Evans, S. Djordjevic, D. Savic.

    A coarse-grid approach to representing building blockage effects in 2D urban flood modelling, in: J. Hydrol, March 2012, vol. 426, pp. 1–16.
  • 31A. Chen, B. Evans, S. Djordjevic, D. Savic.

    Multi-layer coarse-grid modelling in 2D urban flood simulations, in: J. Hydrol, March 2012, vol. 470, pp. 1-11.
  • 32R. Cienfuegos, E. Barthélemy, P. Bonneton.

    A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. I. Model development and analysis, in: Internat. J. Numer. Methods Fluids, 2006, vol. 51, no 11, pp. 1217–1253.
  • 33B. Cushman-Roisin.

    Introduction to Geophysical Fluid Dynamics, 1st, Prentice Hall, April 1994.
  • 34A. Defina, L. D'alpaos.

    A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models, in: Modelling Flood Propagation over Initially Dry Areas, 1994, pp. 82–101.
  • 35V. Dougalis, D. Mitsotakis, J.-C. Saut.

    Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis, in: Journal of Scientific Computing, 2010.
  • 36D. Dutykh, D. Mitsotakis.

    On the relevance of the dam break problem in the context of nonlinear shallow water equations, in: DCDS-B, 2010, vol. 13, pp. 799–818.
  • 37D. Dutykh, R. Poncet, F. Dias.

    The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation, in: Eur J Mech B Fluids, 2011, vol. 30, no 6, pp. 598–615.
  • 38B. Engquist, A. Majda.

    Absorbing boundary conditions for the numerical simulation of waves, in: Math. Comp., 1977, vol. 31, no 139, pp. 629–651.
  • 39S. Frazao, Y. Zech.

    Undular bores and secondary waves–Experiments and hybrid finite-volume modelling, in: Journal of Hydraulic Research, 2002.
  • 40E. Frénod, A. Rousseau.

    Paralic Confinement: Models and Simulations, in: Acta Appl Math, January 2013, vol. 123, no 1, pp. 1–19.
  • 41V. Guinot, S. Soares-Frazão.

    Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, in: Int. J Numer. Meth. Fluids, 2006, vol. 50, pp. 309–345.
  • 42V. Guinot.

    Multiple porosity shallow water models for macroscopic modelling of urban floods, in: Adv Water Resour, 2012, vol. 37, pp. 40–72.
  • 43L. Halpern.

    Artificial boundary conditions for the linear advection diffusion equation, in: Math. Comp., 1986, vol. 46, no 74, pp. 425–438.
  • 44J.-M. Hervouét, R. Samie, B. Moreau.

    Modelling urban areas in dam-break flood-wave numerical simulations, in: International Seminar and Workshop on Rescue Actions Based on Dambreak Flow Analysis, Seinéjoki, Finland, 2000.
  • 45J. Klafter, A. Blumen, M. Shlesinger.

    Stochastic pathway to anomalous diffusion, in: Physical Review A, 1987, vol. 35, pp. 3081–3085.
  • 46D. Lannes, P. Bonneton.

    Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, in: Phys. Fluids, 2009, vol. 21, no 1, 016601.
  • 47D. Lannes.

    The water waves problem: mathematical analysis and asymptotics, in: Mathematical Surveys and Monographs, 2013.
  • 48O. Le Métayer, S. Gavrilyuk, S. Hank.

    A numerical scheme for the Green–Naghdi model, in: Journal of Computational Physics, 2010, vol. 229, pp. 2034–2045.
  • 49F. Lemarié, L. Debreu, E. Blayo.

    ... an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 1: The Constant Coefficients ..., in: Electronic Transactions on Numerical Analysis, 2012.
  • 50J. Lhomme.

    Modélisation des inondations en milieu urbain: approches unidimensionnelle, bidimensionnelle et macroscopique, Université Montpellier 2, France, 2006.
  • 51R. Metzler, J. Klafter.

    The random walk's guide to anomalous diffusion: a fractional dynamics approach, in: Phys Rep, 2000, vol. 339, no 1, pp. 1–77.
  • 52G. Papanicolau, A. Bensoussan, J.-L. Lions.

    Asymptotic analysis for periodic structures, in: North-Holland, 1978.
  • 53A. Rousseau, R. Temam, J. Tribbia.

    The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case, in: J. Math. Pures Appl. (9), 2008, vol. 89, no 3, pp. 297–319.
  • 54B. Sanders, J. Schubert, H. Gallegos.

    Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling, in: J. Hydrol, 2008, vol. 362, pp. 19–38.
  • 55S. Soares-Frazão, J. Lhomme, V. Guinot, Y. Zech.

    Two-dimensional shallow-water model with porosity for urban flood modelling, in: Journal of Hydraulic Research, 2008, vol. 46, no 1, pp. 45–64.
  • 56M. Tissier, P. Bonneton, F. Marche, F. Chazel, D. Lannes.

    A new approach to handle wave breaking in fully non-linear Boussinesq models, in: Coastal Engineering, 2012, vol. 67, pp. 54–66.
  • 57M. Velickovic.

    Macroscopic modeling of urban flood by a porosity approach, Université catholique de Louvain, Belgium, 2012.
  • 58J. Yan, C. Shu.

    Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, in: Journal of Scientific Computing, 2002.
  • 59X. Zhang, Y. Xia, C.-W. Shu.

    Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes, in: Journal of Scientific Computing, 2012, vol. 50, no 1, pp. 29-62.

    http://dx.doi.org/10.1007/s10915-011-9472-8
  • 60M. Zijlema, G. Stelling, P. Smit.

    SWASH : an operational public domain code for simulating wave fields and rapidly varying flows in coastal waters, in: Coastal Engineering, 2011, vol. 58, pp. 992–1012.