Section: Overall Objectives


Our research project belongs to the scientific field of Virtual Reality (VR) and 3D interaction with virtual environments. VR systems can be used in numerous applications such as for industry (virtual prototyping, assembly or maintenance operations, data visualization), entertainment (video games, theme parks), arts and design (interactive sketching or sculpture, CAD, architectural mock-ups), education and science (physical simulations, virtual classrooms), or medicine (surgical training, rehabilitation systems). A major change that we foresee in the next decade concerning the field of Virtual Reality relates to the emergence of new paradigms of interaction (input/output) with Virtual Environments (VE).

As for today, the most common way to interact with 3D content still remains by measuring user's motor activity, i.e., his/her gestures and physical motions when manipulating different kinds of input device. However, a recent trend consists in soliciting more movements and more physical engagement of the body of the user. We can notably stress the emergence of bimanual interaction, natural walking interfaces, and whole-body involvement. These new interaction schemes bring a new level of complexity in terms of generic physical simulation of potential interactions between the virtual body and the virtual surrounding, and a challenging "trade-off" between performance and realism. Moreover, research is also needed to characterize the influence of these new sensory cues on the resulting feelings of "presence" and immersion of the user.

Besides, a novel kind of user input has recently appeared in the field of virtual reality: the user's mental activity, which can be measured by means of a "Brain-Computer Interface" (BCI). Brain-Computer Interfaces are communication systems which measure user's€ electrical cerebral activity and translate it, in real-time, into an exploitable command. BCIs introduce a new way of interacting "by thought" with virtual environments. However, current BCI can only extract a small amount of mental states and hence a small number of mental commands. Thus, research is still needed here to extend the capacities of BCI, and to better exploit the few available mental states in virtual environments.

Our first motivation consists thus in designing novel “body-based” and “mind-based” controls of virtual environments and reaching, in both cases, more immersive and more efficient 3D interaction.

Furthermore, in current VR systems, motor activities and mental activities are always considered separately and exclusively. This reminds the well-known “body-mind dualism” which is at the heart of historical philosophical debates. In this context, our objective is to introduce novel “hybrid” interaction schemes in virtual reality, by considering motor and mental activities jointly, i.e., in a harmonious, complementary, and optimized way. Thus, we intend to explore novel paradigms of 3D interaction mixing body and mind inputs. Moreover, our approach becomes even more challenging when considering and connecting multiple users which implies multiple bodies and multiple brains collaborating and interacting in virtual reality.

Our second motivation consists thus in introducing a “hybrid approach” which will mix mental and motor activities of one or multiple users in virtual reality.